Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Porous Media
Factor de Impacto: 1.49 Factor de Impacto de 5 años: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimir: 1091-028X
ISSN En Línea: 1934-0508

Volumes:
Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2018025180
pages 1079-1093

MHD PERISTALTIC FLOW OF MICROPOLAR CASSON NANOFLUID THROUGH A POROUS MEDIUM BETWEEN TWO CO-AXIAL TUBES

Mona A. A. Mohamed
Department of Mathematics, Faculty of Education, Ain Shams University, Heliopolis, Roxy, Cairo, 11757, Egypt
none
Mohamed Y. Abou-zeid
Department of Mathematics, Faculty of Education, Ain Shams University, Heliopolis, Roxy, Cairo, 11757, Egypt

SINOPSIS

An analysis was made of the MHD mixed convection peristaltic flow of a micropolar nanofluid obeying a non-Newtonian Casson model through a porous medium between two co-axial tubes. The governing partial differential equations were transformed into a set of nonlinear ordinary differential equations under the assumptions of long wavelength and low-Reynolds number approximations. A homotopy perturbation technique was performed to get analytical solutions for that system of equations. The behavior of the axial velocity, microrotation velocity, temperature, and nanoparticles distribution under the effect of various pertinent parameters to these distributions is discussed analytically and graphically. These significant results may help in understanding the mechanics of some complicated physiological flows.

REFERENCIAS

  1. Abou-zeid, M.Y., Effects of Thermal Diffusion and Viscous Dissipation on Peristaltic Flow of Micropolar Non-Newtonian Nanofluid: Application of Homotopy Perturbation Method, Results Phys, vol. 6, pp. 481-495, 2016.

  2. Abou-zeid, M.Y., Homotopy Perturbation Method to Gliding Motion of Bacteria on a Layer of Power-Law Nanoslime with Heat Transfer, J. Comput. Theor. Nanosci, vol. 12, pp. 3605-3614, 2015.

  3. Abou-zeid, M.Y., Homotopy Perturbation Method to MHD Non-Newtonian Nanofluid Flow through a Porous Medium in Eccentric Annuli with Peristalsis, Therm. Sci, vol. 21, no. 5, pp. 2069-2080,2017a.

  4. Abou-zeid, M.Y. and Mohamed M.A.A., Homotopy Perturbation Method for Creeping Flow of Non-Newtonian Power-Law Nanofluid in a Nonuniform Inclined Channel with Peristalsis, Z. Naturforsch A, vol. 72, no. 10a, pp. 899-907, 2017b.

  5. Akbar, N.S. and Nadeem, S., Numerical and Analytical Simulation of the Peristaltic Flow of Jeffrey Fluid with Reynold's Model of Viscosity, Int. JNumer. Meth. H, vol. 22, pp. 458-472, 2012.

  6. Einstein, A., Investigations on the Theory of the Brownian Movement, Mineola, New York: Dover Publications, 1956.

  7. Eldabe, N.T.M. and Abou-zeid, M.Y., Magnetohydrodynamic Peristaltic Flow with Heat and Mass Transfer of Micropolar Bivis-cosity Fluid through a Porous Medium between Two Co-Axial Tubes, Arab. J. Sci. Eng., vol. 39, pp. 5045-5062, 2014.

  8. Eldabe, N.T.M. and Abou-zeid, M.Y., The Wall Properties Effect on Peristaltic Transport of Micropolar Non-Newtonian Fluid with Heat and Mass Transfer, Math. Probl. Eng., vol. 2010, pp. 1-40, 2010.

  9. Eldabe, N.T.M., Abou-zeid, M.Y., and Younis, Y.M., Magnetohydrodynamic Peristaltic Flow of Jeffry Nanofluid with Heat Transfer through a Porous Medium in a Vertical Tube, Appl. Math. Inform. Sci, vol. 11, no. 4, pp. 1097-1103, 2017.

  10. Ellahi, R., Raza, M., and Akbar, N.S., Study of Peristaltic Flow of Nanofluid with Entropy Generation in a Porous Medium, J. Porous Media, vol. 20, no. 5, pp. 461-478,2017a.

  11. Ellahi, R., Tariq, M.H., Hassan, M., and Vafai, K., On Boundary Layer Nanoferroliquid Flow under the Influence of Low Oscillating Stretchable Rotating Disk, J. Mol. Liq., vol. 229, pp. 339-345, 2017b.

  12. Esfahani, J.A., Akbarzadeh, M., Rashidi, S., Rosen, M.A., and Ellahi, R., Influences of Wavy Wall and Nanoparticles on Entropy Generation over Heat Exchanger Plate, Int. J. Heat Mass Transf., vol. 109, pp. 1162-1171, 2017.

  13. Ghasemi, K. and Siavashi, M., Lattice Boltzmann Numerical Simulation and Entropy Generation Analysis of Natural Convection of Nanofluid in a Porous Cavity with Different Linear Temperature Distributions on Side Walls, J. Mol. Liq, vol. 233, pp. 415-430,2017.

  14. Hayat, T., Nisar, Z., Ahmad, B., and Yasmin, H., Simultaneous Effects of Slip and Wall Properties on MHD Peristaltic Motion of Nanofluid with Joule Heating, J. Magn. Magn. Mater., vol. 395, pp. 48-58, 2015.

  15. He, J.H., Application of Homotopy Perturbation Method to Nonlinear Wave Equations, Chaos. Soliton. Fract., vol. 26, pp. 695-700, 2005.

  16. Khan, A.A., Usman, H., Vafai, K., and Ellahi, R., Study of Peristaltic Flow of Magnetohydrodynamic Walter's B Fluid with Slip and Heat Transfer, Sci. Iran., vol. 23, no. 6, pp. 2650-2662, 2016.

  17. Khan, M.I., Waqas, M., Hayat, T., and Alsaedi, A., Chemically Reactive Flow of Micropolar Fluid Accounting Viscous Dissipation and Joule Heating, Results Phys, vol. 7, pp. 3706-3715, 2017.

  18. Nield, D.A. and Kuznetsov, A.V., The Cheng-Minkowycz Problem for the Double Diffusive Natural Convective Boundary Layer Flow in a Porous Medium Saturated by a Nanofluid, Int. J. Heat Mass Transf., vol. 54, pp. 374-378, 2011.

  19. Rashidi, S., Esfahani, J.A., and Ellahi, R., Convective Heat Transfer and Particle Motion in an Obstructed Duct with Two Side by Side Obstacles by Means of DPM Model, Appl. Sci., vol. 7, no. 4, pp. 1-14, 2017.

  20. Rohsenow, W.M., Hartnett, J.P., and Cho, Y.I., Handbook of Heat Transfer, New York, NY: McGraw-Hill, 1998.

  21. Shaaban, A.A.M. and Abou-zeid, M.Y., Effects of Heat and Mass Transfer on MHD Peristaltic Flow of a Non-Newtonian Fluid through a Porous Medium between Two Coaxial Cylinders, Math. Probl. Eng., vol. 2013, pp. 1-11, 2013.

  22. Shehzad, N., Zeeshan, A., Ellahi, R., and Vafai, K., Convective Heat Transfer of Nanofluid in a Wavy Channel: Buongiorno's Mathematical Model, J. Mol. Liq., vol. 222, pp. 446-455, 2016.

  23. Siavashi, M. and Rostami, A., Two-Phase Simulation of Non-Newtonian Nanofluid Natural Convection in a Circular Annulus Partially or Completely Filled with Porous Media, Int. J. Mech. Sci., vol. 133, pp. 689-703, 2017.

  24. Siavashi, M., Talesh Bahrami, H.R., and Saffari, H., Numerical Investigation of Flow Characteristics, Heat Transfer and Entropy Generation of Nanofluid Flow inside an Annular Pipe Partially or Completely Filled with Porous Media using Two-Phase Mixture Model, Energy, vol. 93, pp. 2451-2466, 2015.

  25. Siavashi, M., Talesh Bahrami, H.R., and Saffari, H., Numerical Investigation of Porous Rib Arrangement on Heat Transfer and Entropy Generation of Nanofluid Flow in an Annulus using a Two-Phase Mixture Model, Numer. Heat. Tr. A-Appl., vol. 71, pp. 1251-1273,2017.

  26. Siavashi, M., Yousofvand, R., and Rezanejad, S., Nanofluid and Porous Fins Effect on Natural Convection and Entropy Generation of Flow inside a Cavity, Adv. Powder Technol., vol. 29, pp. 142-156, 2018.

  27. Tamoor, M., Waqas, M., Khan, M.I., Alsaedi, A., and Hayat, T., Magnetohydrodynamic Flow of Casson Fluid over a Stretching Cylinder, Results Ohys., vol. 7, pp. 498-502, 2017.

  28. Wang, X.Q. and Mujumdar, A.S., Heat Transfer Characteristics of Nanofluids: A Review, Int. J. Therm. Sci., vol. 46, pp. 1-19, 2007.

  29. Yaghoubi Emami, R., Siavashi, M., and Shahriari Moghaddam, G., The Effect of Inclination Angle and Hot Wall Configuration on Cu-Water Nanofluid Natural Convection inside a Porous Square Cavity, Adv. Powder Technol., vol. 29, no. 3, pp. 519-536, 2018.