Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Porous Media
Factor de Impacto: 1.49 Factor de Impacto de 5 años: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimir: 1091-028X
ISSN En Línea: 1934-0508

Volumes:
Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2019021840
pages 1159-1175

INVESTIGATION INTO THE WETTING KINETICS OF SMALL AND INHOMOGENEOUS POWDER COLUMNS VIA WEIGHT-GAIN MEASUREMENTS

C. Thomas
Institute of Physical Chemistry, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Freiberg, Saxony, Germany
R. Hüttl
Institute of Physical Chemistry, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Freiberg, Saxony, Germany
Florian Mertens
Institute of Physical Chemistry, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Freiberg, Saxony, Germany

SINOPSIS

The capillary rise of a probing liquid into a porous solid is generally followed either by measuring the height of the advancing liquid front over time or by detecting the weight gain over time. To analyze such experimental data, it is well-established to employ the Lucas–Washburn equation in order to access the capillary radius or the geometric constant of a porous sample, which is the basis for contact angle calculation. However, in most cases the assumption of a linear correlation between the squared meniscus height or the squared weight gain versus time is at least questionable and many deviations from this ideal behavior were observed in the past. This work introduces two new data analysis methods for wetting experiments derived from the differential Lucas–Washburn equation. Concerning the viscous flow regime of an ideal Newtonian liquid, our new approaches take the apparent contact mass automatically into account and offer a possibility to calculate the geometric constant of a porous sample more adequately than it was done in the past. Both of the new approaches have proven to provide the geometric constant correctly even in case of inhomogeneously packed powder columns.

REFERENCIAS

  1. Blake, T.D., The Physics of Moving Wetting Lines, J. Colloid Interf. Sci., vol. 299, no. 1, pp. 1-13,2006. .

  2. Bosanquet, C.H., LV. On the Flow of Liquids into Capillary Tubes, Philos. Mag. Ser. 6, vol. 45, no. 267, pp. 525-531, 1923. .

  3. Chebbi, R., Dynamics of Liquid Penetration into Capillary Tubes, J. Colloid Interf. Sci., vol. 315, no. 1, pp. 255-260,2007. .

  4. Chibowski, E. and Holysz, L., Use of the Washburn Equation for Surface Free Energy Determination, Langmuir, vol. 8, no. 2, pp. 710-716, 1992. .

  5. Depalo, A. and Santomaso, A.C., Wetting Dynamics and Contact Angles of Powders Studied through Capillary Rise Experiments, Colloids Surf, A: Physicochem. Eng. Aspects, vol. 436, pp. 371-379, 2013. .

  6. Elizalde, E., Urteaga, R., Koropecki, R.R., and Berli, C.L.A., Inverse Problem of Capillary Filling, Phys. Rev. Letters, vol. 112, no. 13, pp. 134502/1-134502/5,2014. .

  7. Fries, N. andDreyer, M., An Analytic Solution of Capillary Rise Restrained by Gravity, J. Colloid Interf. Sci, vol. 320, no. 1, pp. 259-263, 2008a. .

  8. Fries, N. and Dreyer, M., The Transition From Inertial to Viscous Flow in Capillary Rise, J. Colloid Interf. Sci, vol. 327, no. 1, pp. 125-128, 2008b. .

  9. Gonzalez-Martin, M.L., Janczuk, B., Labajos-Broncano, L., Bruque, J.M., and Gonzalez-Garcia, C.M., Analysis of the Silica Surface Free Energy by the Imbibition Technique, J. ColloidInterf. Sci., vol. 240, no. 2, pp. 467-472,2001. .

  10. Grundke, K., Boerner, M., and Jacobasch, H.-J., Characterization of Fillers and Fibres by Wetting and Electrokinetic Measurements, Colloids Surf., vol. 58, nos. 1-2, pp. 47-59, 1991. .

  11. Grundke, K., Bogumil, T., Gietzelt, T., Jacobasch, H.-J., Kwok, D.Y., and Neumann, A.W., Wetting Measurements on Smooth, Rough and Porous Solid Surfaces, Prog. Colloid Polymer Sci., vol. 101, pp. 58-68,1996. .

  12. Hamraoui, A. and Nylander, T., Analytical Approach for the Lucas-Washburn Equation, J. Colloid Interf. Sci., vol. 250, no. 2, pp. 415-421,2002. .

  13. Heshmati, M. and Piri, M., Experimental Investigation of Dynamic Contact Angle and Capillary Rise in Tubes with Circular and Noncircular Cross Sections, Langmuir: ACS J. Surf. Colloids, 2014. .

  14. Hilpert, M., Effects of Dynamic Contact Angle on Liquid Infiltration into Inclined Capillary Tubes: (Semi)-Analytical Solutions, J. Colloid Interf. Sci., vol. 337, no. 1, pp. 138-144,2009. .

  15. Hilpert, M., Effects of Dynamic Contact Angle on Liquid Withdrawal from Capillary Tubes: (Semi)-Analytical Solutions, J. Colloid Interf. Sci, vol. 347, no. 2, pp. 315-323, 2010. .

  16. Labajos-Broncano, L., Gonzalez-Martin, M.L., Bruque, J.M., Gonzalez-Garcia, C.M., and Janczuk, B., On the Use of Washburn's Equation in the Analysis of Weight-Time Measurements Obtained from Imbibition Experiments, J. Colloid Interf. Sci, vol. 219, no. 2, pp. 275-281, 1999. .

  17. Labajos-Broncano, L., Gonzalez-Martin, M.L., Bruque, J.M., and Gonzalez-Garcia, C.M., Comparison of the Use of Washburn's Equation in the Distance-Time and Weight-Time Imbibition Techniques, J. Colloid Interf. Sci, vol. 233, no. 2, pp. 356-360, 2001. .

  18. Labajos-Broncano, L., Gonzalez-Martin, M.L., and Bruque, J.M., Washburn's Equation Facing Galileo's Transformation: Some Remarks, J. Colloid Interf. Sci., vol. 253, no. 2, pp. 472-474, 2002. .

  19. Labajos-Broncano, L., Antequera-Barroso, J.A., Gonzalez-Martin, M.L., and Bruque, J.M., An Experimental Study about the Imbibition of Aqueous Solutions of Low Concentration of a Non-Adsorbable Surfactant in a Hydrophilic Porous Medium, J. Colloid Interf. Sci, vol. 301, no. 1, pp. 323-328, 2006a. .

  20. Labajos-Broncano, L., Antequera-Barroso, J.A., Gonzalez-Martin, M.L., and Bruque, J.M., Hydrocarbons Imbibition for Geometrical Characterization of Porous Media through the Effective Radius Approach, Appl. Surf. Sci., vol. 253, no. 3, pp. 1291-1298, 2006b. .

  21. Li, K., Zhang, D., Bian, H., Meng, C., and Yang, Y., Criteria for Applying the Lucas-Washburn Law, Sci. Rep., vol. 5, p. 14085, 2015. .

  22. Lim, H., Tripathi, A., and Lee, J., Dynamics of a Capillary Invasion in a Closed-End Capillary, Langmuir: ACS J. Surf. Colloids, vol. 30, no. 31, pp. 9390-9396, 2014. .

  23. Lucas, R., Uber das Zeitgesetz des Kapillaren Aufstiegs von Flussigkeiten, Kolloid-Zeitschrift, vol. 23, no. 1, pp. 15-22,1918. .

  24. Mangang, M., Seifert, H.J., and Pfleging, W., Influence of Laser Pulse Duration on the Electrochemical Performance of Laser Structured Life of Composite Electrodes, J. Power Sourc., vol. 304, pp. 24-32,2016. .

  25. Marmur, A. and Cohen, R.D., Characterization of Porous Media by the Kinetics of Liquid Penetration: The Vertical Capillaries Model, J. Colloid Interf. Sci, vol. 189, no. 2, pp. 299-304, 1997. .

  26. OLoughlin, M., Wilk, K., Priest, C., Ralston, J., and Popescu, M.N., Capillary Rise Dynamics of Aqueous Glycerol Solutions in Glass Capillaries: A Critical Examination of the Washburn Equation, J. Colloid Interf. Sci, vol. 411, pp. 257-264, 2013. .

  27. Oung, O., Hassanizadeh, M., and Bezuijen, A., Two-Phase Flow Experiments in a Geocentrifuge and the Significance of Dynamic Capillary Pressure Effect, J. Porous Media, vol. 8, no. 3, pp. 247-257, 2005. .

  28. Pfleging, W. and Proll, J., A New Approach for Rapid Electrolyte Wetting in Tape Cast Electrodes for Lithium-Ion Batteries, J. Mater. Chem. A, vol. 2, no. 36, p. 14918, 2014. .

  29. Proll, J., Kohler, R., Torge, M., Ulrich, S., Ziebert, C., Bruns, M., Seifert, H.J., and Pfleging, W., Laser Microstructuring and Annealing Processes for Lithium Manganese Oxide Cathodes, Appl. Surf. Sci., vol. 257, no. 23, pp. 9968-9976, 2011. .

  30. Rideal, E.K., On the Flow of Liquids under Capillary Pressure, Philos. Mag. Ser. 6, vol. 44, no. 264, pp. 1152-1159, 1922. .

  31. Schoelkopf, J., Gane, P.A.C., Ridgway, C.J., and Matthews, G.P., Practical Observation of Deviation from Lucas-Washburn Scaling in Porous Media, Colloids Surf, A: Physicochem. Eng. Aspects, vol. 206, nos. 1-3, pp. 445-454, 2002. .

  32. Shardt, O., Waghmare, P.R., Derksen, J.J., and Mitra, S.K., Inertial Rise in Short Capillary Tubes, RSC Adv., vol. 4, no. 28, p. 14781,2014. .

  33. Siebold, A., Capillary Rise for Thermodynamic Characterization of Solid Particle Surface, J. Colloid Interf. Sci., vol. 186, pp. 60-70, 1997. .

  34. Siebold, A., Nardin, M., Schultz, J., Walliser, A., and Oppliger, M., Effect of Dynamic Contact Angle on Capillary Rise Phenomena, Colloids Surf. A: Physicochem. Eng. Aspects, vol. 161, no. 1, pp. 81-87, 2000. .

  35. Singh, R., Akbarzadeh, A., and Mochizuki, M., Experimental Determination of Wick Properties for Loop Heat Pipe Applications, J. Porous Media, vol. 12, no. 8, pp. 759-776, 2009. .

  36. Stevens, N., Ralston, J., and Sedev, R., The Uniform Capillary Model for Packed Beds and Particle Wettability, J. Colloid Interf. Sci., vol. 337, no. 1, pp. 162-169, 2009. .

  37. Troger, J., Lunkwitz, K., Grundke, K., and Burger, W., Determination of the Surface Tension of Microporous Membranes Using Wetting Kinetics Measurements, Colloids Surf. A: Physicochem. Eng. Aspects, vol. 134, no. 3, pp. 299-304, 1998. .

  38. Washburn, E.W., The Dynamics of Capillary Flow, Phys. Rev., vol. 17, no. 3, pp. 273-283, 1921. .

  39. Wei, B., Chang, Q., and Yan, C., Wettability Determined by Capillary Rise with Pressure Increase and Hydrostatic Effects, J. Colloid Interf. Sci, vol. 376, no. 1, pp. 307-311, 2012. .

  40. Xue, H.T., Fang, Z.N., Yang, Y., Huang, J.P., and Zhou, L.W., Contact Angle Determined by Spontaneous Dynamic Capillary Rises with Hydrostatic Effects: Experiment and Theory, Chem. Phys. Lett., vol. 432, nos. 1-3, pp. 326-330,2006. .

  41. Yaws, C.L., Thermophysical Properties of Chemicals and Hydrocarbons, Norwich: William Andrew, 2008. .

  42. Yaws, C.L., Transport Properties of Chemicals and Hydrocarbons. Viscosity, Thermal Conductivity, and Diffusivity of CI to C100 Organics and Ac to Zr Inorganics, Norwich: William Andrew, 2009. .

  43. Zhmud, B.V., Tiberg, F., and Hallstensson, K., Dynamics of Capillary Rise, J. Colloid Interf. Sci., vol. 228, no. 2, pp. 263-269, 2000. .


Articles with similar content:

RECONCILIATION OF PACKED COLUMN PERMEABILITY DATA—PART 1. THE TEACHING OF GIDDINGS REVISITED FLUCTUATIONS
Special Topics & Reviews in Porous Media: An International Journal, Vol.1, 2010, issue 1
Hubert M. Quinn
Effects of the plate material characteristics and its inclination angle on falling film breakup
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Suad Jakirlic, E. N. Ganic, S. Sikalo, M. Alispahic, Dz. Kadric
A NEW MATHEMATICAL MODEL FOR THE SOLVENT CHAMBER EVOLUTION IN THE VAPOR EXTRACTION PROCESS
Journal of Porous Media, Vol.17, 2014, issue 12
Yongan Gu, Xinfeng Jia, Fanhua Zeng
NUMERICAL INVESTIGATIONS ON FORMATION CONDITIONS OF THE THIEF ZONE BY LEVEL SET METHOD
Journal of Porous Media, Vol.22, 2019, issue 2
Chunlei Yu , Shuoliang Wang, Hui Zhao
DETERMINATION OF UNSATURATED HYDRAULIC PROPERTIES USING DRAINAGE GRAVITY TEST AND PARTICLE SWARM OPTIMIZATION ALGORITHM
Journal of Porous Media, Vol.16, 2013, issue 11
Ph. Dubujet, Ahmed Bellagi, Jalila Sghaier, Tarek Lazrag, M. Kacem