Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Porous Media
Factor de Impacto: 1.752 Factor de Impacto de 5 años: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Imprimir: 1091-028X
ISSN En Línea: 1934-0508

Volumes:
Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2019028954
pages 813-829

NUMERICAL INVESTIGATION OF TEMPERATURE DISTRIBUTION OF PROTON EXCHANGE MEMBRANE FUEL CELLS AT HIGH CURRENT DENSITY

Jun Shen
School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Lingping Zeng
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
Zhengkai Tu
School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
Zhichun Liu
School of Energy and Power Engineering, Huazhong University of Science & Tecnology, 1037 Luo Yu Rd. Hongshan District, Wuhan 430074, China
Wei Liu
School of Energy and Power Engineering, Huazhong University of Science & Tecnology, 1037 Luo Yu Rd. Hongshan District, Wuhan 430074, China

SINOPSIS

A three-dimensional model with coolant channels was developed to investigate the temperature distribution and performance of proton exchange membrane fuel cells (PEMFCs) under the impacts of different operating conditions, including Reynolds numbers of the coolant water, current densities, and relative humidity levels of reactants. Numerical simulation results revealed that relative humidity had a significant effect either on cell performance or on temperature distribution, and the temperature of the interface between the catalyst and gas diffusion layers in the cathode was the highest of any part in the fuel cell. Limited by the temperature of the coolant, a small rise in the reactant temperature would have little influence on the overall temperature distribution. Lastly, a novel thermal resistance model was proposed to validate the rules governing temperature distribution in fuel cells.

REFERENCIAS

  1. Ahmed, D.H. and Sung, H.J., Effects of Channel Geometrical Configuration and Shoulder Width on PEMFC Performance at High Current Density, J. Power Sources, vol. 162, no. 1, pp. 327-339,2006.

  2. Faghri, A. and Guo, Z., Challenges and Opportunities of Thermal Management Issues Related to Fuel Cell Technology and Modeling, Int. J. Heat Mass Transf., vol. 48, nos. 19-20, pp. 3891-3920, 2005.

  3. Hakenjos, A., Muenter, H., Wittstadt, U., and Hebling, C., A PEM Fuel Cell for Combined Measurement of Current and Temperature Distribution, and Flow Field Flooding, J. Power Sources, vol. 131, nos. 1-2, pp. 213-216, 2004.

  4. Hakenjos, A. and Hebling, C., Spatially Resolved Measurement of PEM Fuel Cells, J. Power Sources, vol. 145, no. 2, pp. 307-311, 2005.

  5. Ji, M. and Wei, Z., A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells, Energies, vol. 2, no. 4, pp. 1057-1106, 2009.

  6. Ju, H., Meng, H., and Wang, C.Y., A Single-Phase, Non-Isothermal Model for PEM Fuel Cells, Int. J. Heat Mass Transf, vol. 48, no. 7, pp. 1303-1315,2005.

  7. Kandlikar, S.G. and Lu, Z., Thermal Management Issues in a PEMFC Stack - A Brief Review of Current Status, Appl. Therm. Eng., vol. 29, no. 7, pp. 1276-1280,2009.

  8. Khakpour, M. and Vafai, K., Analysis of Transport Phenomena within PEM Fuel Cells - An Analytical Solution, Int. J. Heat Mass Transf, vol. 51, no. 15, pp. 3712-3723, 2008.

  9. Li, X., Cao, G., Shao, Q., and Zhu, X., A Gaseous Water Management Model for Proton Exchange Membrane Fuel Cell Membrane, J Chem. Ind. Eng., vol. 57, no. 9, pp. 2167-2174,2006.

  10. Liu, Z.C., Shen, J., Pei, H.C., Tu, Z.K., Wang, J., Wan, Z.M., and Liu, W., Effect of Humidified Water Vapor on Heat Balance Management in a Proton Exchange Membrane Fuel Cell Stack, Int. J. Energy Res., vol. 39, no. 4, pp. 504-515, 2015.

  11. Pei, H.C., Liu, Z.C., Zhang, H.N., Tu, Z.K., Wan, Z.M., and Liu, W., In Situ Measurement of Temperature Distribution in Proton Exchange Membrane Fuel Cell I a Hydrogen-Air Stack, J. Power Sources, vol. 227, pp. 72-79,2013.

  12. Tu, Z.K., Zhang, H.N., Luo, Z.P., Liu, J., Wan, Z.M., and Pan, M., Evaluation of 5 kW Proton Exchange Membrane Fuel Cell Stack Operated at 95 C under Ambient Pressure, J. Power Sources, vol. 222, pp. 277-281,2013.

  13. Wan, Z.M., Shen, J., Zhang, H.N., Tu, Z.K., and Liu, W., In Situ Temperature Measurement in a 5 kW-Class Proton Exchange Membrane Fuel Cell Stack with Pure Oxygen as the Oxidant, Int. J. Heat Mass Transf., vol. 75, pp. 231-234, 2014.

  14. Wang, L., Husar, A., Zhou, T.H., and Liu, H.T., A Parametric Study of PEM Fuel Cell Performances, Int. J. Hydrog. Energy, vol. 28, no. 11, pp. 1263-1272,2003.

  15. Wang, M.H., Guo, H., and Ma, C.F., Temperature Distribution on the MEA Surface of a PEMFC with Serpentine Channel Flow Bed, J. Power Sources, vol. 157, no. 1, pp. 181-187, 2006.

  16. Wen, C.Y. and Huang, G.W., Application ofaThermally Conductive Pyrolytic Graphite Sheet to Thermal Management of a PEM Fuel Cell, J. Power Sources, vol. 178, no. 1, pp. 132-140, 2008.

  17. Yu, X.C., Zhou, B., and Sobiesiak, A., Water and Thermal Management for Ballard PEM Fuel Cell Stack, J. Power Sources, vol. 147, nos. 1-2, pp. 184-195,2005.

  18. Zhang, G.S., Guo, L.J., Ma, L.Z., and Liu, H.T., Simultaneous Measurement of Current and Temperature Distributions in a Proton Exchange Membrane Fuel Cell, J. Power Sources, vol. 195, no. 11, pp. 3597-3604,2010.

  19. Zhang, G.S., Shen, S.L., Guo, L.J., and Liu, H.T., Dynamic Characteristics of Local Current Densities and Temperatures in Proton Exchange Membrane Fuel Cells during Reactant Starvations, Int. J. Hydrog. Energy, vol. 37, no. 2, pp. 1884-1892, 2012.


Articles with similar content:

NUMERICAL STUDY OF EFFECT OF HEAT AND MASS TRANSFER ON SOLID OXIDE FUEL CELL PERFORMANCE
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
H. Mahcene, H. Bouguettaia, H. Ben Moussa, D. Bechki
CONTROL OF EFFECTIVE OXYGEN TRANSFER CHARACTERISTICS IN GAS DIFFUSION LAYER WITH MOISTURE FOR PEFC
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2014, issue
Yoshio Utaka, Ryo Koresawa
THERMAL CONDUCTIVITY ENHANCEMENT OF MATERIAL FOR CALCIUM CHLORIDE/WATER THERMOCHEMICAL ENERGY STORAGE
International Heat Transfer Conference 16, Vol.20, 2018, issue
Maho Mitsuo, Yukitaka Kato, Takayuki Terauchi, Hiroshi Iguchi, Keiko Fujioka, Takuma Ohtaki
EFFECT OF OPERATING CONDITIONS ON PERFORMANCE OF A PROTON EXCHANGE MEMBRANE FUEL CELL (PEMFC)
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Ziari Yasmina Kerboua , Youcef Kerkoub , Ahmed Benzaoui
A CFD INVESTIGATION OF EFFECTS OF FLOW-FIELD GEOMETRY ON TRANSIENT PERFORMANCE OF AN AUTOMOTIVE POLYMER ELECTROLYTE MEMBRANE FUEL CELL
Computational Thermal Sciences: An International Journal, Vol.7, 2015, issue 2
Pattarapong Choopanya, Zhiyin Yang