Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Imprimir: 0278-940X
ISSN En Línea: 1943-619X

Volumen 47, 2019 Volumen 46, 2018 Volumen 45, 2017 Volumen 44, 2016 Volumen 43, 2015 Volumen 42, 2014 Volumen 41, 2013 Volumen 40, 2012 Volumen 39, 2011 Volumen 38, 2010 Volumen 37, 2009 Volumen 36, 2008 Volumen 35, 2007 Volumen 34, 2006 Volumen 33, 2005 Volumen 32, 2004 Volumen 31, 2003 Volumen 30, 2002 Volumen 29, 2001 Volumen 28, 2000 Volumen 27, 1999 Volumen 26, 1998 Volumen 25, 1997 Volumen 24, 1996 Volumen 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v37.i4-5.30
pages 355-375

Retinal Pigment Epithelium Differentiation of Stem Cells: Current Status and Challenges

Basak E. Uygun
Center For Engineering in Medicine, Shriners Hospital for Children, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
Nripen Sharma
Martin Yarmush
Center For Engineering in Medicine, Shriners Hospital for Children, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA


Degeneration and loss of retinal pigment epithelium (RPE) is the cause of a number of degenerative retinal diseases, including age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy, leading to blindness that affects three million Americans as of now. Transplantation of RPE aims to restore retinal structure and the interaction between the RPE and photoreceptors, which is fundamental to sight. Although a significant amount of progress has been made in the past 20 years in autologous RPE transplantation, sources for RPE cells are limited. Recent advances in stem cell culture and differentiation techniques have allowed the generation of RPE cells from pluripotent stem cells. In this review, we discuss strategies for generating functional RPE cells from human embryonic stem cells and induced pluripotent stem cells, and summarize transplantation studies of these derived RPEs. We conclude with challenges in cell-replacement therapies using human embryonic and induced pluripotent stem cell-derived RPEs.

Articles with similar content:

Bone Tissue Engineering: Recent Advances and Challenges
Critical Reviews™ in Biomedical Engineering, Vol.40, 2012, issue 5
Syam P. Nukavarapu, Cato T. Laurencin, Ami R. Amini
Potential Role of Induced Pluripotent Stem Cells as Regenerative Medicine in Retinal Cell Damage
Journal of Environmental Pathology, Toxicology and Oncology, Vol.37, 2018, issue 4
Yi-Ran Pan, Ying-Jian Sun, Bin Fan, Guang-Yu Li
Mechanisms Controlling Embryonic Stem Cell Self-Renewal and Differentiation
Critical Reviews™ in Eukaryotic Gene Expression, Vol.16, 2006, issue 3
Huai Li, Ming Zhan, Henry Yang, Yu Sun, Mahendra S. Rao
Tumor-Stromal Interactions in Pancreatic Cancer
Critical Reviews™ in Oncogenesis, Vol.18, 2013, issue 1 - 2
Daniel D. Von Hoff, Richard G. Posner, Haiyong Han, Clifford Whatcott
Scaffolds: A Novel Carrier and Potential Wound Healer
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.32, 2015, issue 4
Tarun Garg, Chetan Chaudhary