Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Biomedical Engineering
SJR: 0.243 SNIP: 0.376 CiteScore™: 0.79

ISSN Imprimir: 0278-940X
ISSN En Línea: 1943-619X

Volumen 46, 2018 Volumen 45, 2017 Volumen 44, 2016 Volumen 43, 2015 Volumen 42, 2014 Volumen 41, 2013 Volumen 40, 2012 Volumen 39, 2011 Volumen 38, 2010 Volumen 37, 2009 Volumen 36, 2008 Volumen 35, 2007 Volumen 34, 2006 Volumen 33, 2005 Volumen 32, 2004 Volumen 31, 2003 Volumen 30, 2002 Volumen 29, 2001 Volumen 28, 2000 Volumen 27, 1999 Volumen 26, 1998 Volumen 25, 1997 Volumen 24, 1996 Volumen 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2015011026
pages 183-200

Review of Texture Quantification of CT Images for Classification of Lung Diseases

Mehrdad Alemzadeh
Department of Computing and Software, McMaster University
Colm Boylan
Department of Radiology, McMaster University and St. Joseph's Health Care Hamilton
Markad V. Kamath
Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5 Canada


Computer-based identification of abnormal regions and classification of diseases using CT images of the lung has been a goal of many investigators. In this paper, we review research that has used texture analysis along with segmentation and fractal analysis. First, a review of texture methods is performed. Recent research on quantitative analysis of the lung using texture methods is categorized into six groups of computational methods: structural, statistical, model based, transform domain, texture-segmentation, and texture-fractal analysis. Finally, the applications of texture-based methods combined with either segmentation algorithms or fractal analysis is evaluated on lung CT images from patients with diseases such as emphysema, COPD, and cancer. We also discuss applications of artificial neural networks, support vector machine, k-nearest, and Bayesian methods to classify normal and diseased segments of CT images of the lung. A combination of these texture methods followed by classifiers could lead to efficient and accurate diagnosis of pulmonary diseases such as pulmonary fibrosis, emphysema, and cancer.