Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Biomedical Engineering
SJR: 0.26 SNIP: 0.375 CiteScore™: 1.4

ISSN Imprimir: 0278-940X
ISSN En Línea: 1943-619X

Volumen 48, 2020 Volumen 47, 2019 Volumen 46, 2018 Volumen 45, 2017 Volumen 44, 2016 Volumen 43, 2015 Volumen 42, 2014 Volumen 41, 2013 Volumen 40, 2012 Volumen 39, 2011 Volumen 38, 2010 Volumen 37, 2009 Volumen 36, 2008 Volumen 35, 2007 Volumen 34, 2006 Volumen 33, 2005 Volumen 32, 2004 Volumen 31, 2003 Volumen 30, 2002 Volumen 29, 2001 Volumen 28, 2000 Volumen 27, 1999 Volumen 26, 1998 Volumen 25, 1997 Volumen 24, 1996 Volumen 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v39.i6.10
pages 473-491

Encapsulated Cell Grafts to Treat Cellular Deficiencies and Dysfunction

N.V. Krishnamurthy
Department of Radiology, Dartmouth Medical School, Hanover, New Hampshire
Barjor Gimi
Biomedical NMR Research Center Department of Radiology and Medicine Geisel School of Medicine at Dartmouth Lebanon, NH, 03756 USA


Cell transplantation provides a therapeutic alternative to whole organ transplantation in the management of diseases arising from the absence or failure of specialized cells. Though allogenic transplantation is favorable in terms of graft acceptance, xenotransplantation can provide a potentially unlimited source of cells and can overcome shortage of human donors. Effective immunoisolation of the xenografts is critical for their long term survival and function. Encapsulation of cells in polymeric matrices, organic or inorganic, provides a physical selectively permeable barrier between the host and the graft, thereby immunoisolating the graft. Microencapsulation of cells in alginate hydrogels has been pervasive, but this approach does not provide precise control over porosity, whereas micro- and nano-fabrication technologies can provide precise and reproducible control over porosity. We highlight both encapsulation approaches in this review, with their relative advantages and challenges. We also highlight the therapeutic potential of encapsulated cells for treating a variety of diseases, detailing the xenotransplantation of pancreatic islets in diabetes therapy as well as the grafting of engineered cells that facilitate localized enzyme-prodrug therapy of pancreatic cancer.

Articles with similar content:

Immunoisolation Cell Therapy for CNS Diseases
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.18, 2001, issue 3
Shelly R. Winn, Dwaine F. Emerich
Scaffolds for Tissue Engineering of Cartilage
Critical Reviews™ in Eukaryotic Gene Expression, Vol.12, 2002, issue 3
J. M. Bezemer, C. A. van Blitterswijk, J. Riesle, T. B. F. Woodfield, J. S. Pieper
Tissue Engineering of Cardiac Valves on the Basis of PGA/PLA Co-Polymers
Journal of Long-Term Effects of Medical Implants, Vol.11, 2001, issue 3&4
Ulrich A. Stock, John E. Mayer, Jr.
Adipose-Derived Adult Stem Cells: Available Technologies for Potential Clinical Regenerative Applications in Dentistry
Critical Reviews™ in Biomedical Engineering, Vol.41, 2013, issue 6
Elena Varoni, Andrea Cochis, Barbara Azzimonti, Lia Rimondini, Enrico Catalano, Antonio Carrassi
Application of Hydrogels in Heart Valve Tissue Engineering
Journal of Long-Term Effects of Medical Implants, Vol.25, 2015, issue 1-2
Bin Xu, Daniel S. Puperi, Xing Zhang, K. Jane Grande-Allen, Yan Wu, Jennifer L. West