Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Imprimir: 0278-940X
ISSN En Línea: 1943-619X

Volumes:
Volumen 47, 2019 Volumen 46, 2018 Volumen 45, 2017 Volumen 44, 2016 Volumen 43, 2015 Volumen 42, 2014 Volumen 41, 2013 Volumen 40, 2012 Volumen 39, 2011 Volumen 38, 2010 Volumen 37, 2009 Volumen 36, 2008 Volumen 35, 2007 Volumen 34, 2006 Volumen 33, 2005 Volumen 32, 2004 Volumen 31, 2003 Volumen 30, 2002 Volumen 29, 2001 Volumen 28, 2000 Volumen 27, 1999 Volumen 26, 1998 Volumen 25, 1997 Volumen 24, 1996 Volumen 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v28.i12.70
pages 33-40

Kinematic Analysis of Total Knee Prosthesis Designed for Asian Population

F. H. Low
School of Mechanical and Production Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798
L P. Khoo
School of Mechanical and Production Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798
C. K. Chua
School of Mechanical and Production Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798
N. N. Lo
Department of Orthopaedic Surgery, Singapore General Hospital, Outram Road, Singapore 169608

SINOPSIS

In designing a total knee replacement (TKR) prosthesis catering for the Asian population, 62 sets of femur were harvested and analyzed The morphometrical data obtained were found to be in good agreement with dimensions typical of the Asian knee and has reaffirmed the fact that Caucasian knees arc generally larger than Asian knees. Subsequently, these data when treated using a multivariate statistical technique resulted in the establishment of major design parameters for six different sizes of femoral implants. An extra-small implant size with established dimensions and geometrical shape has surfaced from the study. The differences between the Asian knees and the Caucasian knees are discussed. Employing the established femoral dimensions and motion path of the knee joint, the articulating tibia profile was generated. All the sizes of implants were modeled using a computer-aided software package. Thereupon, these models that accurately fits the local Asian knee were transported into a dynamic and kinematic analysis software package. The tibiofemoral joint was modeled successfully as a slide curve joint to study intuitively the motion of the femur when articulating on the tibia surface. An optimal tibia profile could be synthesized to mimic the natural knee path motion. Details of the analysis are presented and discussed.