Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Biomedical Engineering
SJR: 0.26 SNIP: 0.375 CiteScore™: 1.4

ISSN Imprimir: 0278-940X
ISSN En Línea: 1943-619X

Volumes:
Volumen 48, 2020 Volumen 47, 2019 Volumen 46, 2018 Volumen 45, 2017 Volumen 44, 2016 Volumen 43, 2015 Volumen 42, 2014 Volumen 41, 2013 Volumen 40, 2012 Volumen 39, 2011 Volumen 38, 2010 Volumen 37, 2009 Volumen 36, 2008 Volumen 35, 2007 Volumen 34, 2006 Volumen 33, 2005 Volumen 32, 2004 Volumen 31, 2003 Volumen 30, 2002 Volumen 29, 2001 Volumen 28, 2000 Volumen 27, 1999 Volumen 26, 1998 Volumen 25, 1997 Volumen 24, 1996 Volumen 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2019030342
pages 419-426

Generation of Acsl4 Gene Knockout Mouse Model by CRISPR/Cas9-Mediated Genome Engineering

Hongyan Ren
Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
Zaidong Hua
Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
Jinhua Meng
Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
Adrian Molenaar
AgResearch Ltd., Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
Yanzhen Bi
Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
Ni Cheng
Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
Xinmin Zheng
Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China

SINOPSIS

Acyl-CoA synthetase 4 (Acsl4) is involved in lipid synthesis and fatty acid degradation, and disruption of its function causes lipid metabolism disorder in various species. Herein, we report the generation of Acsl4 knockout (KO) mice using the CRISPR/Cas9 gene editing system to study its effects on lipid deposition. In this report, a large 12kb deletion in the Acsl4 gene was performed by coinjection of Cas9 mRNA and two guide RNAs (sgRNAs) into mouse fertilized oocytes. Six mutant mice carrying target mutations were examined by PCR analysis and direct sequencing. The gene modified mice remained healthy and displayed normal behavior. All the mutant F0 mice were mated with wild mice to produce the F1 generation, and only 1 F1 mutant mouse was obtained.

REFERENCIAS

  1. Fernandez X, Monin G, Talmant A, Mourot J, Lebret B. Influence of intramuscular fat content on the quality of pig meat - 2. Consumer acceptability of m. longissimus lumborum. Meat Sci. 1999;53(1):67-72. .

  2. Mercade A, Perez-Enciso M, Varon L, Alves E, Noguera JL, Sanchez AS, Folch JM. Adipocyte fatty-acid binding protein is closely associated to the porcine FAT1 locus on chromosome 4. J Anim Sci. 2006;84(11):2907-13. .

  3. Mercade A, Sanchez A, Folch JM. Assignment of the acyl-CoA synthetase long-chain family member 4 (ACSL4) gene to porcine chromosome X. Anim Genet. 2005;36(1):76. .

  4. Chen JN, Jiang YZ, Cen WM, Xing SH, Zhu L, Tang GQ, Li MZ, Jiang AA, Lou PE, Wen AX, Wang Q, He T, Zhu GX, Xie M, Li XW. Distribution of H-FABP and ACSL4 gene polymorphisms and their associations with intramus-cular fat content and backfat thickness in different pig populations. Genet Mol Res. 2014;13(3):6759-72. .

  5. Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu J, Xiong W, Xi JJ. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 2013;23(4):465-72. .

  6. Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O'Connor-Giles KM. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics. 2013;194(4):1029-35. .

  7. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153(4):910-18. .

  8. Wang X, Cao C, Huang J, Yao J, Hai T, Zheng Q, Zhang H, Qin G, Cheng J, Wang Y, Yuan Z, Zhou Q, Wang H, Zhao J. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep. 2016;6:20620. .

  9. Song Y, Yuan L, Wang Y, Chen M, Deng J, LV Q, Sui T, Li Z, Lai L. Efficient dual sgRNA-directed large gene deletion in rabbit with CRISPR/Cas9 system. Cell Mol Life Sci. 2016;73(15):2959-68. .

  10. Chen X, Xu F, Zhu C, Ji J, Zhou X, Feng X, Guang S. Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans. Sci Rep. 2014;4:7581. .

  11. Ran F, PD A, Hsu J, Wright V, Agarwala D, Scott A, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281-2308. .

  12. Ren H, Tao C, Li K, Bi Y, Zheng X. Generation of a floxed allele of the mouse microRNA-200 clusters. Appl Biochem Biotechnol. 2017;182(3):1218-1228. .

  13. Westra ER, Semenova E, Datsenko KA, Jackson RN, Wiedenheft B, Severinov K, Brouns SJ. Type I-E CRIS-PR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet. 2013;9(9):e1003742. .

  14. Choi PS, Meyerson M. Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun. 2014;5:3728. .

  15. Zhou JJ, Wang B, Shen L, Chen Y, Su J, Yang W, Zhang X, Tian, Huang X. Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting. FEBS J. 2014;281(7): 1717-25. .

  16. Jang DE, Lee JY, Lee JH, Koo OJ, Bae HS, Jung MH, Bae JH, Hwang WS, Chang YJ, Lee YH, Lee HW, Yeom SC. Multiple sgRNAs with overlapping sequences enhance CRISPR/Cas9-mediated knock-in efficiency. Exp Mol Med. 2018;50(4):16. .

  17. Bassett AR, Tibbit C, Ponting CP, Liu JL. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/ Cas9 system. Cell Rep. 2013;4(1):220-28. .

  18. Wang H, Yang H, Shivalila CS, Dawlaty M, Cheng AW, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153(4):910-918. .


Articles with similar content:

GABAergic Cortical Neuron Chromatin as a Putative Target to Treat Schizophrenia Vulnerability
Critical Reviews™ in Neurobiology, Vol.15, 2003, issue 2
Alessandro Guidotti, Dennis R. Grayson, Colin P. Mitchell, Marin Veldic, Lucio Tremolizzo, Erminio Costa
The c-Fes Family of Protein-Tyrosine Kinases
Critical Reviews™ in Oncogenesis, Vol.9, 1998, issue 1
Jim A. Rogers, Annemarie Shibata, Haiyun Cheng, Thomas E. Smithgall, Steven Schreiner, Kristi L. Peters, Jack M. Lionberger, Nancy Dunham, Jianze Li, Scott D. Briggs, Beata Scholtz
Role of Raf Kinase Inhibitor Protein in Helicobacter pylori-Mediated Signaling in Gastric Cancer
Critical Reviews™ in Oncogenesis, Vol.19, 2014, issue 6
Devasis Chatterjee, Sam Cross-Knorr, Steven F. Moss, Arlin B. Rogers, Sicheng Wen, Liana Nisimova
Epigenetic Targets of Arsenic: Emphasis on Epigenetic Modifications During Carcinogenesis
Journal of Environmental Pathology, Toxicology and Oncology, Vol.34, 2015, issue 1
Donghern Kim, Yuanqin Yin, Zhuo Zhang, Young-Ok Son, Poyil Pratheeshkumar, Ram Vinod Roy, Rakesh D, Lei Wang, Sasidharan Padmaja Divya, John Andrew Hitron, Xianglin Shi
Cloning of Mating-Type Gene MAT1-1 from the Caterpillar Medicinal Mushroom, Cordyceps militaris (Ascomycetes) Using TAIL-PCR Technology
International Journal of Medicinal Mushrooms, Vol.16, 2014, issue 5
Xuan-Wei Zhou, Dan-Dan Shi, Zhen-Hua Gong, Wei-Ran Cong, Hui Guo