Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Imprimir: 0278-940X
ISSN En Línea: 1943-619X

Volumen 47, 2019 Volumen 46, 2018 Volumen 45, 2017 Volumen 44, 2016 Volumen 43, 2015 Volumen 42, 2014 Volumen 41, 2013 Volumen 40, 2012 Volumen 39, 2011 Volumen 38, 2010 Volumen 37, 2009 Volumen 36, 2008 Volumen 35, 2007 Volumen 34, 2006 Volumen 33, 2005 Volumen 32, 2004 Volumen 31, 2003 Volumen 30, 2002 Volumen 29, 2001 Volumen 28, 2000 Volumen 27, 1999 Volumen 26, 1998 Volumen 25, 1997 Volumen 24, 1996 Volumen 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2013006841
pages 459-470

Complexity in Neurobiology: Perspectives from the study of noise in human motor systems

Ramesh Balasubramaniam
Sensorimotor Neuroscience Laboratory, McMaster University
Kjerstin Torre
M2H Laboratory, University of Montpellier, Montpellier, France


This article serves as an introduction to the themed special issue on "Complex Systems in Neurobiology." The study of complexity in neurobiology has been sensitive to the stochastic processes that dominate the micro-level architecture of neurobiological systems and the deterministic processes that govern the macroscopic behavior of these systems. A large body of research has traversed these scales of interest, seeking to determine how noise at one spatial or temporal scale influences the activity of the system at another scale. In introducing this special issue, we pay special attention to the history of inquiry in complex systems and why scientists have tended to favor linear, causally driven, reductionist approaches in Neurobiology. We follow this with an elaboration of how an alternative approach might be formulated. To illustrate our position on how the sciences of complexity and the study of noise can inform neurobiology, we use three systematic examples from the study of human motor control and learning: 1) phase transitions in bimanual coordination; 2) balance, intermittency, and discontinuous control; and 3) sensorimotor synchronization and timing. Using these examples and showing that noise is adaptively utilized by the nervous system, we make the case for the studying complexity with a perspective of understanding the macroscopic stability in biological systems by focusing on component processes at extended spatial and temporal scales. This special issue continues this theme with contributions in topics as diverse as neural network models, physical biology, motor learning, and statistical physics.