Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Imprimir: 0278-940X
ISSN En Línea: 1943-619X

Volumen 47, 2019 Volumen 46, 2018 Volumen 45, 2017 Volumen 44, 2016 Volumen 43, 2015 Volumen 42, 2014 Volumen 41, 2013 Volumen 40, 2012 Volumen 39, 2011 Volumen 38, 2010 Volumen 37, 2009 Volumen 36, 2008 Volumen 35, 2007 Volumen 34, 2006 Volumen 33, 2005 Volumen 32, 2004 Volumen 31, 2003 Volumen 30, 2002 Volumen 29, 2001 Volumen 28, 2000 Volumen 27, 1999 Volumen 26, 1998 Volumen 25, 1997 Volumen 24, 1996 Volumen 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v40.i2.40
pages 135-154

Review on 4D Models for Organ Motion Compensation

Christine Tanner
Computer Vision Laboratory, ETH Zurich, Switzerland
Dirk Boye
Computer Vision Laboratory, ETH Zurich, Switzerland; Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
Golnoosh Samei
Computer Vision Laboratory, ETH Zurich, Switzerland
Gabor Szekely
Computer Vision Laboratory, ETH Zurich, Switzerland


Minimal invasive tumor therapies are getting ever more sophisticated with novel treatment approaches and new devices allowing for improved targeting precision. Applying these effectively requires precise localization of the structures of interest. Vital processes, such as respiration and heartbeat, induce organ motion, which cannot be neglected during therapy. This review focuses on 4D organ models to compensate for respiratory motion during therapy. An overview is given on the effects of motion on the therapeutical outcome, methods required to capture and quantify respiratory motion, range of reported tumor motion, types of surrogates used when tumors are not directly observable, and methods for temporal prediction of surrogate motion. Organ motion models, which predict the location of structures of interest from surrogates measured during therapy, are discussed in detail.