Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Enhanced Heat Transfer
Factor de Impacto: 0.562 Factor de Impacto de 5 años: 0.605 SJR: 0.175 SNIP: 0.361 CiteScore™: 0.33

ISSN Imprimir: 1065-5131
ISSN En Línea: 1026-5511

Volumes:
Volumen 27, 2020 Volumen 26, 2019 Volumen 25, 2018 Volumen 24, 2017 Volumen 23, 2016 Volumen 22, 2015 Volumen 21, 2014 Volumen 20, 2013 Volumen 19, 2012 Volumen 18, 2011 Volumen 17, 2010 Volumen 16, 2009 Volumen 15, 2008 Volumen 14, 2007 Volumen 13, 2006 Volumen 12, 2005 Volumen 11, 2004 Volumen 10, 2003 Volumen 9, 2002 Volumen 8, 2001 Volumen 7, 2000 Volumen 6, 1999 Volumen 5, 1998 Volumen 4, 1997 Volumen 3, 1996 Volumen 2, 1995 Volumen 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.v6.i6.50
pages 441-456

A New Computational Procedure for Heat Transfer and Pressure Drop During Refrigerant Condensation Inside Enhanced Tubes

Alberto Cavallini
Dipartimento di Fisica Tecnica, Universita di Padova, via Venezia 1,I-35131 Padova, Italy
Davide Del Col
University of Padova, Department of Industrial Engineering, Via Venezia 1, 35131 Padova, Italy
Luca Doretti
Dept. of Civil, Architectural and Environmental Engineering, University of Padova, Via Venezia 1, 35131, Padova - IT
Giovanni Antonio Longo
Dept. of Management and Engineering, University of Padova, Str.lla S. Nicola, 3, 36100, Vicenza - IT
Luisa Rossetto
University of Padova, Department of Industrial Engineering, via Venezia 1, 35131 Padova, Italy

SINOPSIS

A new computational procedure for heat transfer coefficient and pressure drop during condensation of pure refrigerants and refrigerant mixtures inside enhanced tubes is presented. A modified form of the Cavallini and Zecchin equation (Cavallini and Zecchin, 1971, 1974) for smooth tube has been implemented for condensation inside low-fin, micro-fin and cross-grooved tubes: the comparison with a set of around 300 experimental data points, including both pure refrigerants, azeotropic and zeotropic refrigerant mixtures, shows an absolute mean deviation of around 15%.
Two traditional models for adiabatic pressure losses inside smooth tubes, Sardesai et al. (1982) and Friedel (1979), have been modified for condensation inside micro-fin tubes. The comparison with available experimental data, a set of around 120 data points, shows an absolute mean deviation between 21 and 24%. A further extension of the same models has been used to predict pressure drop during vaporization inside micro-fin tubes: calculated values compare very well with experimental ones.