Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Enhanced Heat Transfer
Factor de Impacto: 0.562 Factor de Impacto de 5 años: 0.605 SJR: 0.175 SNIP: 0.361 CiteScore™: 0.33

ISSN Imprimir: 1065-5131
ISSN En Línea: 1026-5511

Volumes:
Volumen 26, 2019 Volumen 25, 2018 Volumen 24, 2017 Volumen 23, 2016 Volumen 22, 2015 Volumen 21, 2014 Volumen 20, 2013 Volumen 19, 2012 Volumen 18, 2011 Volumen 17, 2010 Volumen 16, 2009 Volumen 15, 2008 Volumen 14, 2007 Volumen 13, 2006 Volumen 12, 2005 Volumen 11, 2004 Volumen 10, 2003 Volumen 9, 2002 Volumen 8, 2001 Volumen 7, 2000 Volumen 6, 1999 Volumen 5, 1998 Volumen 4, 1997 Volumen 3, 1996 Volumen 2, 1995 Volumen 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.v6.i1.10
pages 1-11

Numerical Investigations on Enhancement of Heat Transfer in a Compact Fin-and-Tube Heat Exchanger Using Delta Winglet Type Vortex Generators

A. A. Bastani Jahromi
Institut für Thermo- und Fluid-dynamik, Ruhr-Universität Bochum, Postfach 102148, 44721 Bochum Germany
Nimai K. Mitra
Institut für Thermo- und Fluid-dynamik, Ruhr-Universität Bochum, Postfach 102148, 44721 Bochum Germany
Gautam Biswas
Department of Mechanical Engineering, Indian Institute of Technology Guwahati, 781039 India
Assciate Editor of Journal of Heat Transfer (ASME)

SINOPSIS

Three dimensional flow and heat transfer in a compact fin-tube cross flow heat exchanger have been modeled as the flow in a rectangular channel with built-in cylindrical obstacles. The flow past a tube bank has been simulated by a spacewise periodic fully developed flow in a computational domain consisting of a channel element with one tube. Flow and temperature fields in this element and in another element with two in-line tubes have been computed from the numerical solution of three dimensional Navier-Stokes and energy equations. Comparison of results show that at low Reynolds number (∼ 400) the Nusselt number in the neighborhood of the second tube of a two tube in-line configuration is close to the Nusselt number for spacewise periodic fully developed flow. Computational results also show poor heat transfer in the wake region. In the presence of the winglet type longitudinal vortex generators in the wake behind the cylinder, heat transfer in this region is enhanced significantly. Results show increases in average Nusselt number due to the vortex generators can be between 20 and 50 percent in the Reynolds number range of 400 and 1200. A factor, defined as the ratio of increase in Nusselt number to increase in friction factor, of 0.65 to 0.78 can be obtained, over the range of Reynolds number mentioned above.


Articles with similar content:

Pressure Drop in Laminar and Turbulent Flows in Circular Pipe with Baffles − An Experimental and Analytical Study
International Journal of Fluid Mechanics Research, Vol.33, 2006, issue 4
S. B. Chin, Sulaiman Al-Zuhair, Xiao Yu Luo, Mushtak Al-Atabi
NUMERICAL SIMULATION ON TURBULENT FLUID FLOW AND HEAT TRANSFER ENHANCEMENT OF A TUBE BANK FIN HEAT EXCHANGER WITH MOUNTED VORTEX GENERATORS ON THE FINS
Journal of Enhanced Heat Transfer, Vol.18, 2011, issue 5
Wan-Ling Hu, Liang-Bi Wang, Yong-Heng Zhang
HEAT TRANSFER ENHANCEMENT IN MICROCHANNELS USING AN ELASTIC VORTEX GENERATOR
Journal of Enhanced Heat Transfer, Vol.19, 2012, issue 3
Abdolrahman Dadvand, H. Mirzaee, I. Mirzaee, R. Shabani
Vortex Heat Transfer Enhancement in Dimpled Channels
International Heat Transfer Conference 15, Vol.23, 2014, issue
Egon Hassel, Yaroslav Chudnovsky, Nikolai Kornev, Sergey A. Isaev, Alexander Leontiev
COMPUTATIONAL OF STUDIES OF HEAT TRANSFER ENHANCEMENT IN TURBULENT CHANNEL FLOW WITH TWISTED STRIP INSERTS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Suvanjan Bhattacharyya, Himadri Chattopadhyay