Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Enhanced Heat Transfer
Factor de Impacto: 0.562 Factor de Impacto de 5 años: 0.605 SJR: 0.211 SNIP: 0.361 CiteScore™: 0.33

ISSN Imprimir: 1065-5131
ISSN En Línea: 1026-5511

Volumes:
Volumen 26, 2019 Volumen 25, 2018 Volumen 24, 2017 Volumen 23, 2016 Volumen 22, 2015 Volumen 21, 2014 Volumen 20, 2013 Volumen 19, 2012 Volumen 18, 2011 Volumen 17, 2010 Volumen 16, 2009 Volumen 15, 2008 Volumen 14, 2007 Volumen 13, 2006 Volumen 12, 2005 Volumen 11, 2004 Volumen 10, 2003 Volumen 9, 2002 Volumen 8, 2001 Volumen 7, 2000 Volumen 6, 1999 Volumen 5, 1998 Volumen 4, 1997 Volumen 3, 1996 Volumen 2, 1995 Volumen 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.v7.i6.50
pages 427-438

R-22 Condensation in Flat Aluminum Multi-Channel Tubes

Nae-Hyun Kim
Department of Mechanical Engineering, Incheon National University, 12-1 Songdo-Dong, Yeonsu-Gu Inchon, 22012, Korea
Jin-Pyo Cho
Department of Mechanical Engineering, University of Inchon, Inchon, 402-749, Korea
Jung-Oh Kim
Department of Mechanical Engineering, University of Inchon, Inchon, 402-749, Korea

SINOPSIS

In this study, condensation heat transfer tests were conducted in flat aluminum multichannel tubes using R-22. Two internal geometries were tested; one with a smooth inner surface and the other with micro-fins. Data are presented for the following range of variables; vapor quality (0.1 ∼ 0.9), mass flux (200 ∼ 600 kg/m2s) and heat flux (5 ∼ 15kW/m2). The micro-fin tube showed higher heat transfer coefficients compared with those of the smooth tube. The difference increased with the vapor quality. Surface tension force acting on the micro-fin surface at high vapor quality is believed to be responsible. For the smooth tube, the heat transfer coefficient increased with the mass flux. The heat transfer coefficient of the micro-fin tube, however, was independent of the mass flux, especially at high vapor qualities. This implies that, at the high vapor quality, the surface tension force on the fin is dominant over vapor shear. The 1997 Yang and Webb model was modified to correlate the present data. The modified model adequately predicted the data.


Articles with similar content:

An Experimental Study of Forced Convective Boiling Heat Transfer of Refrigerants in a Rough Surface Tube
International Journal of Fluid Mechanics Research, Vol.25, 1998, issue 1-3
H. Shintaku, Toru Shigechi, Satoru Momoki, T. Fujii, Shigeru Koyama, Jian Yu
Flow boiling of R-134a in a minichannel plate evaporator with augmented surface
International Heat Transfer Conference 12, Vol.50, 2002, issue
Michael M. Ohadi, Francis Henrique Ramos Franca, Majid Molki, A. P. Rupani
Convective Vaporization of Pure Refrigerants in Enhanced and Integral-Fin Tube Banks
Journal of Enhanced Heat Transfer, Vol.1, 1994, issue 4
Neelkanth S. Gupte, Ralph L. Webb
A Critical Review of Condensation Heat Transfer Predicting Models-Effects of Surface-tension Force
Journal of Enhanced Heat Transfer, Vol.6, 1999, issue 2-4
Chien-Yuh Yang
CONVECTIVE BOILING HEAT TRANSFER OF WATER IN A CAPILLARY TUBE UNDER A LOW FLOW RATE CONDITION
International Heat Transfer Conference 13, Vol.0, 2006, issue
Fumito Kaminaga, Kunihito Matsumura, Sumith Baduge