Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Enhanced Heat Transfer
Factor de Impacto: 0.562 Factor de Impacto de 5 años: 0.605 SJR: 0.175 SNIP: 0.361 CiteScore™: 0.33

ISSN Imprimir: 1065-5131
ISSN En Línea: 1026-5511

Volumen 27, 2020 Volumen 26, 2019 Volumen 25, 2018 Volumen 24, 2017 Volumen 23, 2016 Volumen 22, 2015 Volumen 21, 2014 Volumen 20, 2013 Volumen 19, 2012 Volumen 18, 2011 Volumen 17, 2010 Volumen 16, 2009 Volumen 15, 2008 Volumen 14, 2007 Volumen 13, 2006 Volumen 12, 2005 Volumen 11, 2004 Volumen 10, 2003 Volumen 9, 2002 Volumen 8, 2001 Volumen 7, 2000 Volumen 6, 1999 Volumen 5, 1998 Volumen 4, 1997 Volumen 3, 1996 Volumen 2, 1995 Volumen 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.2012003327
pages 259-270


S. Bin-Mansoor
ME Department, King Fahd University of Petroleum & Minerals, Saudi Arabia
Bekir S. Yilbas
Mechanical Engineering Department, KFUPM Box 1913, Dhahran 31261, Saudi Arabia


Heat transfer across silicon−aluminum−silicon thin films due to ultrashort laser pulse irradiation is examined. Since silicon films are dielectric and do not have electrons in the conduction band, phonon radiative transport, based on the Boltzmann transport equation, is incorporated to predict equivalent equilibrium temperature in the silicon thin films. The modified two-equation model is used to account for the nonequilibrium ultrashort laser pulse heating in the aluminum film. The thermal boundary resistance is introduced at the interface of the films and the volumetric electron−phonon resistance is incorporated at the aluminum interfaces. The reflection, absorption, and transmittance of the incident beam by the thin films are determined using the matrix method. Temporal variation of equivalent equilibrium temperature in the silicon thin film is validated with the data presented in the previous study. It is found that the lattice phonon temperature in the aluminum film decays sharply toward the interface due to phonon transport to silicon film. The temperature jump at the silicon−aluminum first interface attains high values when the lattice phonon temperature at the aluminum interface is high.