Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Enhanced Heat Transfer
Factor de Impacto: 0.562 Factor de Impacto de 5 años: 0.605 SJR: 0.211 SNIP: 0.361 CiteScore™: 0.33

ISSN Imprimir: 1065-5131
ISSN En Línea: 1026-5511

Volumes:
Volumen 26, 2019 Volumen 25, 2018 Volumen 24, 2017 Volumen 23, 2016 Volumen 22, 2015 Volumen 21, 2014 Volumen 20, 2013 Volumen 19, 2012 Volumen 18, 2011 Volumen 17, 2010 Volumen 16, 2009 Volumen 15, 2008 Volumen 14, 2007 Volumen 13, 2006 Volumen 12, 2005 Volumen 11, 2004 Volumen 10, 2003 Volumen 9, 2002 Volumen 8, 2001 Volumen 7, 2000 Volumen 6, 1999 Volumen 5, 1998 Volumen 4, 1997 Volumen 3, 1996 Volumen 2, 1995 Volumen 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.v1.i4.60
pages 351-364

Convective Vaporization of Pure Refrigerants in Enhanced and Integral-Fin Tube Banks

Neelkanth S. Gupte
Senior Engineer, Carrier Corporation Syracuse, NY
Ralph L. Webb
Department of Mechanical Engineering The Pennsylvania State University, University Park, PA 16802, USA
Specialist in enhanced heat transfer and heat exchanger design

SINOPSIS

Convective vaporization data were obtained on staggered tube banks of enhanced nucleate boiling tubes and integral-fin tubes (IFT) with an equilateral pitch-to-diameter ratio of 1.25. Pure refrigerants R-11, R-123, and R-134a were used as working fluids. The data were taken at 4 and 27 C in an apparatus that allows an independent control of vapor quality, mass velocity, and heat flux. The data span vapor qualities of 0 to 0.9, mass velocities of 10 to 28 kg/m2·s, and heat flux of 15 to 48 kW/m2. The data were predicted using a modified superposition model (using 5=1) and also correlated by an asymptotic model. The nucleate boiling components were obtained from pool boiling data, and single-phase heat transfer coefficients were calculated using appropriate correlations for tube banks. The modified superposition model predicted approximately 80% of the GEWA-SE and Turbo-B data within + 20% but did a poor job predicting the integral-fin tube bank data with R-11 at 4 C. Tube banks made of enhanced nucleate boiling tubes, where boiling performance is governed mainly by subsurface cavities, show insignificant effect of forced convection when compared to plain or integral-fin tube banks.


Articles with similar content:

CONVECTIVE BOILING HEAT TRANSFER OF WATER IN A CAPILLARY TUBE UNDER A LOW FLOW RATE CONDITION
International Heat Transfer Conference 13, Vol.0, 2006, issue
Fumito Kaminaga, Kunihito Matsumura, Sumith Baduge
An Experimental Study of Forced Convective Boiling Heat Transfer of Refrigerants in a Rough Surface Tube
International Journal of Fluid Mechanics Research, Vol.25, 1998, issue 1-3
H. Shintaku, Toru Shigechi, Satoru Momoki, T. Fujii, Shigeru Koyama, Jian Yu
A COMPARATIVE STUDY OF VERTICAL UPFLOW AND DOWNFLOW IN A UNIFORMLY HEATED BOILING FLUID
International Heat Transfer Conference 5, Vol.6, 1974, issue
Richard S. Thorsen, Flavio Dobran, Jorge A. Alcorta
Condensation of Vapors of Immiscible Liquids on Horizontal Finned Tubes
Heat Transfer Research, Vol.30, 1999, issue 7-8
S. V. Anisimov, Y. B. Smirnov
BOILING HEAT TRANSFER AND FRICTIONAL PRESSURE DROP IN INTERNALLY REBBED TUBES AT HIGH PRESSURES
Proceedings of Symposium on Energy Engineering in the 21st Century (SEE2000) Volume I-IV, Vol.0, 2000, issue
Tingkuan Chen, Jianxue Zheng , Yu-shan Luo , Qincheng Bi