Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 3.259 Factor de Impacto de 5 años: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2011003343
pages 321-349

BIAS MINIMIZATION IN GAUSSIAN PROCESS SURROGATE MODELING FOR UNCERTAINTY QUANTIFICATION

Vadiraj Hombal
Vanderbilt University, Nashville, TN 37235
Sankaran Mahadevan
Civil and Environmental Engineering Department, Vanderbilt University, Nashville, Tennessee 37235, USA

SINOPSIS

Uncertainty quantification analyses often employ surrogate models as computationally efficient approximations of computer codes simulating the physical phenomena. The accuracy and economy in the construction of surrogate models depends on the quality and quantity of data collected from the computationally expensive system models. Computationally efficient methods for accurate surrogate model training are thus required. This paper develops a novel approach to surrogate model construction based on the hierarchical decomposition of the approximation error. The proposed algorithm employs sparse Gaussian processes on a hierarchical grid to achieve a sparse nonlinear approximation of the underlying function. In contrast to existing methods, which are based on minimizing prediction variance, the proposed approach focuses on model bias and aims to improve the quality of reconstruction represented by the model. The performance of the algorithm is compared to existing methods using several numerical examples. In the examples considered, the proposed method demonstrates significant improvement in the quality of reconstruction for the same sample size.


Articles with similar content:

A FULLY ADAPTIVE INTERPOLATED STOCHASTIC SAMPLING METHOD FOR LINEAR RANDOM PDES
International Journal for Uncertainty Quantification, Vol.7, 2017, issue 3
Johannes Neumann, John Schoenmakers, Martin Eigel, Felix Anker, Christian Bayer
EMBEDDED MODEL ERROR REPRESENTATION FOR BAYESIAN MODEL CALIBRATION
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 4
Habib N. Najm, Xun Huan, Khachik Sargsyan
ANALYSIS OF VARIANCE-BASED MIXED MULTISCALE FINITE ELEMENT METHOD AND APPLICATIONS IN STOCHASTIC TWO-PHASE FLOWS
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 6
Guang Lin, Yalchin Efendiev, Lijian Jiang, Jia Wei
A NOVEL GLOBAL METHOD FOR RELIABILITY ANALYSIS WITH KRIGING
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 5
Zhengming Wang, Xiaojun Duan, Zigan Zhao
TRANSITIONAL ANNEALED ADAPTIVE SLICE SAMPLING FOR GAUSSIAN PROCESS HYPER-PARAMETER ESTIMATION
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 4
Alfredo Garbuno-Inigo, F. A. DiazDelaO, Konstantin M. Zuev