Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 3.259 Factor de Impacto de 5 años: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2014008154
pages 171-184

INFERENCE AND UNCERTAINTY PROPAGATION OF ATOMISTICALLY INFORMED CONTINUUM CONSTITUTIVE LAWS, PART 2: GENERALIZED CONTINUUM MODELS BASED ON GAUSSIAN PROCESSES

Maher Salloum
Sandia National Laboratories, 7011 East Avenue, MS 9158, Livermore, California 94550, USA
Jeremy A. Templeton
Sandia National Laboratories, 7011 East Avenue, MS 9409, Livermore, California 94550, USA

SINOPSIS

Constitutive models in nanoscience and engineering often poorly represent the physics due to significant deviations in model form from their macroscale counterparts. In Part 1 of this study, this problem was explored by considering a continuum scale heat conduction constitutive law inferred directly from molecular dynamics (MD) simulations. In contrast, this work uses Bayesian inference based on the MD data to construct a Gaussian process emulator of the heat flux as a function of temperature and temperature gradient. No assumption of Fourier-like behavior is made, requiring alternative approaches to assess the well-posedness and accuracy of the emulator. Validation is provided by comparing continuum scale predictions using the emulator model against a larger all-MD simulation representing the true solution. The results show that a Gaussian process emulator of the heat conduction constitutive law produces an empirically unbiased prediction of the continuum scale temperature field for a variety of time scales, which was not observed when Fourier's law is assumed to hold. Finally, uncertainty is propagated in the continuum model and quantified in the temperature field so the impact of errors in the model on continuum quantities can be determined.


Articles with similar content:

INFERENCE AND UNCERTAINTY PROPAGATION OF ATOMISTICALLY-INFORMED CONTINUUM CONSTITUTIVE LAWS, PART 1: BAYESIAN INFERENCE OF FIXED MODEL FORMS
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 2
Jeremy A. Templeton, Maher Salloum
Composite Grid Atomistic Continuum Method: An Adaptive Approach to Bridge Continuum with Atomistic Analysis
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 3
Mark S. Shephard, Catalin Picu, D. K. Datta
BAYESIAN INFERENCE OF SOOT VOLUME FRACTION THROUGH AUTO-CORRELATED LASER-INDUCED INCANDESCENCE
First Thermal and Fluids Engineering Summer Conference, Vol.2, 2015, issue
Paul J. Hadwin, David R. Snelling, Timothy A. Sipkens, K. A. Thompson, Kyle J. Daun
STATISTICAL SURROGATE MODELS FOR PREDICTION OF HIGH-CONSEQUENCE CLIMATE CHANGE
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 4
Richard V. Field Jr., Paul Constantine, M. Boslough
UNCERTAINTY QUANTIFICATION TOWARDS FILTERING OPTIMIZATION IN SCENE MATCHING AIDED NAVIGATION SYSTEMS
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 2
Xiaojun Duan, Shengdi Zhang, Lijun Peng