Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 4.911 Factor de Impacto de 5 años: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2018024436
pages 193-210

AN ADAPTIVE REDUCED BASIS COLLOCATION METHOD BASED ON PCM ANOVA DECOMPOSITION FOR ANISOTROPIC STOCHASTIC PDES

Heyrim Cho
Department of Mathematics, University of Maryland, College Park, MD 20742
Howard C. Elman
Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, USA

SINOPSIS

The combination of reduced basis and collocation methods enables efficient and accurate evaluation of the solutions to parametrized partial differential equations (PDEs). In this paper, we study the stochastic collocation methods that can be combined with reduced basis methods to solve high-dimensional parametrized stochastic PDEs. We also propose an adaptive algorithm using a probabilistic collocation method (PCM) and ANOVA decomposition. This procedure involves two stages. First, the method employs an ANOVA decomposition to identify the effective dimensions, i.e., subspaces of the parameter space in which the contributions to the solution are larger, and sort the reduced basis solution in a descending order of error. Then, the adaptive search refines the parametric space by increasing the order of polynomials until the algorithm is terminated by a saturation constraint. We demonstrate the effectiveness of the proposed algorithm for solving a stationary stochastic convection-diffusion equation, a benchmark problem chosen because solutions contain steep boundary layers and anisotropic features. We show that two stages of adaptivity are critical in a benchmark problem with anisotropic stochasticity.


Articles with similar content:

VARIABLE-SEPARATION BASED ITERATIVE ENSEMBLE SMOOTHER FOR BAYESIAN INVERSE PROBLEMS IN ANOMALOUS DIFFUSION REACTION MODELS
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 3
Yuming Ba, Na Ou, Lijian Jiang
MACHINE LEARNING FOR TRAJECTORIES OF PARAMETRIC NONLINEAR DYNAMICAL SYSTEMS
Journal of Machine Learning for Modeling and Computing, Vol.1, 2020, issue 1
Maha Youssef, Roland Pulch
A GRADIENT-BASED SAMPLING APPROACH FOR DIMENSION REDUCTION OF PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 1
Miroslav Stoyanov, Clayton G. Webster
TIME AND FREQUENCY DOMAIN METHODS FOR BASIS SELECTION IN RANDOM LINEAR DYNAMICAL SYSTEMS
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 6
John D. Jakeman, Roland Pulch
COMPARISON OF THREE REGULARIZED SOLUTION TECHNIQUES IN A THREE-DIMENSIONAL INVERSE RADIATION PROBLEM
ICHMT DIGITAL LIBRARY ONLINE, Vol.15, 2001, issue
Ofodike A. Ezekoye, John R. Howell, Hakan Erturk