Suscripción a Biblioteca: Guest
International Journal for Uncertainty Quantification

Publicado 6 números por año

ISSN Imprimir: 2152-5080

ISSN En Línea: 2152-5099

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.9 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0007 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.5 SJR: 0.584 SNIP: 0.676 CiteScore™:: 3 H-Index: 25

Indexed in

A NOVEL GLOBAL METHOD FOR RELIABILITY ANALYSIS WITH KRIGING

Volumen 6, Edición 5, 2016, pp. 445-466
DOI: 10.1615/Int.J.UncertaintyQuantification.2016017441
Get accessGet access

SINOPSIS

In engineering applications, an important challenge of structural reliability analysis is to minimize the number of calls to the performance function, which is expensive to evaluate. In recent years, metamodels have been introduced to solve this problem and the methods combining the Kriging model and Monte Carlo simulation have widely gained attention, because they sample training points sequentially. Two essential issues should be considered in these kinds of methods: the selection of the next training point and the stopping criterion of the iteration. EGRA (efficient global reliability analysis) and AK-MCS (active learning reliability method combining Kriging and Monte Carlo simulation) are two representative approaches, whose strategy of sampling training points and stopping criterion are based on evaluations of each Monte Carlo sample under certain learning functions. However, these proposed learning functions are based on the individual performance of each Monte Carlo sample, causing the methods to focus more on the local optimization. As a result, the idea of globally solving the problem was proposed and applied to the GSAS method in 2015. In this paper, a new global reliability analysis method is proposed. Unlike GSAS, a new learning function called the uncertainty reduction quantification function (URQF) is put forward. Specifically, a new random variable proposed in GSAS that helps simplify the statistical feature of Monte Carlo samples is inherited from GSAS, and a weighting function that establishes the connection between any point and the next training point is proposed. These two functions are combined to build URQF, which quantifies the uncertainty reduction of predicted failure probability after a new training point is added. Meanwhile, a novel stopping criterion is proposed by calculating a prediction of an upper bound of failure probability's relative error; the iteration stops when this prediction reaches a preset bound. In the end, a series of examples are performed, which indicates that both URQF and the novel stopping criterion can improve the efficiency of the method, more or less.

CITADO POR
  1. Lu Cheng, Feng Yun-Wen, Fei Cheng-Wei, Weighted Regression-Based Extremum Response Surface Method for Structural Dynamic Fuzzy Reliability Analysis, Energies, 12, 9, 2019. Crossref

  2. Shi Benke, Deng Zhongmin, An efficient reliability method for composite laminates with high-dimensional uncertainty variables, Acta Mechanica, 232, 9, 2021. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain