Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 0.967 Factor de Impacto de 5 años: 1.301 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2018025120
pages 429-446

UNCERTAINTY QUANTIFICATION FOR INCIDENT HELIUM FLUX IN PLASMA-EXPOSED TUNGSTEN

Ozgur Cekmer
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Khachik Sargsyan
P.O.Box 969, MS 9051; Sandia National Laboratories, Livermore, California 94551, USA
Sophie Blondel
Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996
Habib N. Najm
Sandia National Laboratories, Livermore, CA, 94551
David E. Bernholdt
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Brian D. Wirth
Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996; Nuclear Science and Engineering Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831

SINOPSIS

In this work, the surface response of a tungsten plasma-facing component was simulated by a cluster-dynamics code, Xolotl, with a focus on quantifying the impact of uncertainty in one of the input parameters to Xolotl, namely, the incident helium flux. The simulated conditions involve a tungsten surface exposed to 100 eV helium ion implantations with a flux of either 4 × 1022 or 4 × 1025 He m-2s-1. Two sources were used to describe the implanted helium depth distribution in tungsten, either molecular dynamics (MD) or a binary collision approximation code, the stopping and range of ions in matter (SRIM). The aim of this work is to evaluate and examine uncertain predictions on the helium retention based on these two different modeling methodologies that either neglect electronic energy loss or the crystalline structure of the solid, respectively. An embedded model-form error approach was pursued here in order to arrive at predictions that account for variability due to the two different data sources, and the impact of this model-form uncertainty in incident helium flux on Xolotl output was presented for the two implantation fluxes.