Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 3.259 Factor de Impacto de 5 años: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2015013050
pages 511-526

BAYESIAN APPROACH TO THE STATISTICAL INVERSE PROBLEM OF SCATTEROMETRY: COMPARISON OF THREE SURROGATE MODELS

Sebastian Heidenreich
Physikalisch-Technische Bundesanstalt, Abbestr 2-12, 10587 Berlin
Hermann Gross
Physikalisch-Technische Bundesanstalt, Abbestr 2-12, 10587 Berlin, Germany
Markus Bar
Physikalisch-Technische Bundesanstalt, Abbestr 2-12, 10587 Berlin, Germany

SINOPSIS

Scatterometry provides a fast indirect optical method for the determination of grating geometry parameters of photomasks and is used in mask metrology. To obtain a desired parameter, inverse methods like least squares or the maximum likelihood method are frequently used. A different method, the Bayesian approach, has many advantages against the others, but it is often not used for scatterometry due to the large computational costs. In this paper, we introduce different surrogate models to approximate computationally expensive calculations by fast function evaluations, which enable the Bayesian approach to scatterometry. We introduce the nearest neighbor interpolation, the response surface methodology and a method based on a polynomial chaos expansion. For every surrogate model, we discuss the approximation error and the convergence. Moreover, we apply Markov Chain Monte Carlo sampling to determine desired geometry parameters, and its uncertainties form simulated measurement values based on Bayesian inference. We show that the surrogate model involving polynomial chaos is the most effective.


Articles with similar content:

VARIABLE-SEPARATION BASED ITERATIVE ENSEMBLE SMOOTHER FOR BAYESIAN INVERSE PROBLEMS IN ANOMALOUS DIFFUSION REACTION MODELS
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 3
Yuming Ba, Na Ou, Lijian Jiang
UTILIZING ADJOINT-BASED ERROR ESTIMATES FOR SURROGATE MODELS TO ACCURATELY PREDICT PROBABILITIES OF EVENTS
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 2
Timothy Wildey, Troy Butler
BIAS MINIMIZATION IN GAUSSIAN PROCESS SURROGATE MODELING FOR UNCERTAINTY QUANTIFICATION
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 4
Vadiraj Hombal, Sankaran Mahadevan
AN ADAPTIVE MULTIFIDELITY PC-BASED ENSEMBLE KALMAN INVERSION FOR INVERSE PROBLEMS
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 3
Tao Zhou, Liang Yan
THE ANALYSIS OF EXTENDED SURFACES WITH A VARIABLE HEAT TRANSFER COEFFICIENT
International Heat Transfer Conference 9, Vol.4, 1990, issue
Allan D. Kraus, Fred Landis