Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 4.911 Factor de Impacto de 5 años: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2015010312
pages 209-231

SECOND-ORDER SENSITIVITY ANALYSIS OF PARAMETER ESTIMATION PROBLEMS

Ekaterina Kostina
Institute for Apllied Mathematics, Heidelberg University, Im Neuenheimer Feld 293, 69120 Heidelberg, Germany
Max Nattermann
Institute for Apllied Mathematics, Heidelberg University, Im Neuenheimer Feld 293, 69120 Heidelberg, Germany

SINOPSIS

The use of model-based simulation to gain knowledge of unknown phenomena and processes behavior is a challenging task in many natural sciences. In order to get a full description of an underlying process, an important issue is to estimate unknown parameters from real but erroneous observations. Thus the whole system is affected by uncertainties and a sensitivity analysis is necessary. Usually one applies first-order sensitivity analysis and resulting linearized confidence regions to determine the statistical accuracy of the solution to parameter estimation problems. But especially in significantly nonlinear cases linearized regions may not be an adequate representation. In this paper, we suggest quadratic regions based on the second-order sensitivity analysis. The new region definition is based on a map that transforms the input uncertainties onto the parameter space. Furthermore, the approximation accuracy of the quadratic confidence regions is exemplary illustrated at two examples.


Articles with similar content:

MACHINE LEARNING FOR TRAJECTORIES OF PARAMETRIC NONLINEAR DYNAMICAL SYSTEMS
Journal of Machine Learning for Modeling and Computing, Vol.1, 2020, issue 1
Maha Youssef, Roland Pulch
SHAPLEY EFFECTS FOR SENSITIVITY ANALYSIS WITH CORRELATED INPUTS: COMPARISONS WITH SOBOL' INDICES, NUMERICAL ESTIMATION AND APPLICATIONS
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 5
Bertrand Iooss, Clementine Prieur
EFFECTIVE SAMPLING SCHEMES FOR BEHAVIOR DISCRIMINATION IN NONLINEAR SYSTEMS
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 6
Gregery T. Buzzard, Vu Dinh, Ann E. Rundell
INTRINSIC VERIFICATION OF AN EXACT ANALYTICAL SOLUTION IN TRANSIENT HEAT CONDUCTION
Computational Thermal Sciences: An International Journal, Vol.10, 2018, issue 3
Filippo de Monte, Giampaolo D'Alessandro
THREE-DIMENSIONAL TRANSIENT HEAT DIFFUSION IN A MULTILAYERED ORTHOTROPIC PLATE USING A FINITE ANALYTIC NUMERICAL METHOD
International Heat Transfer Conference 10, Vol.17, 1994, issue
Andre Giovannini, Fernando Manuel Ramos