Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Uncertainty Quantification
Factor de Impacto: 3.259 Factor de Impacto de 5 años: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimir: 2152-5080
ISSN En Línea: 2152-5099

Acceso abierto

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2015010312
pages 209-231

SECOND-ORDER SENSITIVITY ANALYSIS OF PARAMETER ESTIMATION PROBLEMS

Ekaterina Kostina
Institute for Apllied Mathematics, Heidelberg University, Im Neuenheimer Feld 293, 69120 Heidelberg, Germany
Max Nattermann
Institute for Apllied Mathematics, Heidelberg University, Im Neuenheimer Feld 293, 69120 Heidelberg, Germany

SINOPSIS

The use of model-based simulation to gain knowledge of unknown phenomena and processes behavior is a challenging task in many natural sciences. In order to get a full description of an underlying process, an important issue is to estimate unknown parameters from real but erroneous observations. Thus the whole system is affected by uncertainties and a sensitivity analysis is necessary. Usually one applies first-order sensitivity analysis and resulting linearized confidence regions to determine the statistical accuracy of the solution to parameter estimation problems. But especially in significantly nonlinear cases linearized regions may not be an adequate representation. In this paper, we suggest quadratic regions based on the second-order sensitivity analysis. The new region definition is based on a map that transforms the input uncertainties onto the parameter space. Furthermore, the approximation accuracy of the quadratic confidence regions is exemplary illustrated at two examples.


Articles with similar content:

GAUSSIAN PROCESS ADAPTIVE IMPORTANCE SAMPLING
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 2
Keith R. Dalbey, Laura P. Swiler
PRIOR AND POSTERIOR ROBUST STOCHASTIC PREDICTIONS FOR DYNAMICAL SYSTEMS USING PROBABILITY LOGIC
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 4
Alexandros Taflanidis, James L. Beck
BAYESIAN INFERENCE FOR INVERSE PROBLEMS OCCURRING IN UNCERTAINTY ANALYSIS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 1
Gilles Celeux, Nicolas Bousquet, Mathieu Couplet, Shuai Fu
A HOLISTIC APPROACH TO UNCERTAINTY QUANTIFICATION WITH APPLICATION TO SUPERSONIC NOZZLE THRUST
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 4
Christopher J. Roy, Michael S. Balch
GRADIENT-BASED STOCHASTIC OPTIMIZATION METHODS IN BAYESIAN EXPERIMENTAL DESIGN
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 6
Youssef Marzouk, Xun Huan