Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Journal of Flow Visualization and Image Processing
SJR: 0.161 SNIP: 0.312 CiteScore™: 0.1

ISSN Imprimir: 1065-3090
ISSN En Línea: 1940-4336

Journal of Flow Visualization and Image Processing

DOI: 10.1615/JFlowVisImageProc.2019029921
pages 223-238


A. Abdelnaim
Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt
M. Hassaballah
Department of Computer Science, Faculty of Computers and Information, South Valley University, Qena, Egypt
Abdelraheem M. Aly
Department of Mathematics, Faculty of Science, Abha, King Khalid University, Saudi Arabia; Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt


Interactive simulations of fluids has long been an area of interest in computer graphics community. Improving simulation results with high degree of visualization plays a critical role in solving complex natural phenomena. In this paper, the incompressible smoothed particle hydrodynamics (ISPH) is improved via pressure stabilization and correcting divergence operator in solving the pressure Poisson equation. The pressure evaluation is stabilized by introducing the relaxation coefficient in the source terms including divergence of velocity and density invariance conditions; while the divergence operator is corrected using the kernel gradient normalization. The shifting technique is utilized for preventing the anisotropic distributions of particles. Then, the surface particles are visualized via extracting a polygonal mesh and constructing a triangle mesh representing the isosurface of a volumetric data using Marching Cubes (MC) algorithm. The impact of flows are simulated using the improved ISPH method which supports efficiently the stable viscous fluid simulations with large time steps, higher viscosities and resolutions. The experiments show that the efficiency of the simulation is significantly improved using the improved ISPH method compared to the benchmark results for the lid-driven cavity.


  1. Al-Ayyoub, M., AlZu'bi, S., Jararweh, Y., Shehab, M.A., and Gupta, B.B., Accelerating 3D Medical Volume Segmentation Using GPUs, Multimedia Tools Appl., vol. 77, no. 4, pp. 4939-4958,2018.

  2. Aly, A.M., Modeling of Multi-Phase Flows and Natural Convection in a Square Cavity Using an Incompressible Smoothed Particle Hydrodynamics, Int. J. Numer. Methods Heat Fluid Flow, vol. 25, no. 3, pp. 513-533,2015.

  3. Aly, A.M. and Asai, M., Modeling of Non-Darcy Flows through Porous Media Using Extended Incompressible Smoothed Particle Hydrodynamics, Numer. Heat Transf., Part B: Fundament., vol. 67, no. 3, pp. 255-279,2015.

  4. Aly, A.M., Asai, M., and Sonda, Y., Modeling of Surface Tension Force for Free Surface Flows in ISPH Method, Int. J. Numer. Methods Heat Fluid Flow, vol. 23, no. 3, pp. 479-498,2013.

  5. Asai, M., Aly, A.M., Sonoda, Y., and Sakai, Y., A Stabilized Incompressible SPH Method by Relaxing the Density Invariance Condition, J. Appl. Math., vol. 2012, p. 139583,2012.

  6. Auer, S., Real-Timeparticle-Based Fluid Simulation, MS, Technische Universitat Miinchen, Germany, 2008.

  7. Ban, X., Wang, X., He, L., Zhang, Y., and Wang, L., Adaptively Stepped SPH for Fluid Animation based on Asynchronous Time Integration, Neural Comput. Appl., vol. 29, no. 1, pp. 33-42,2018.

  8. Bender, J. and Koschier, D., Divergence-Free Smoothed Particle Hydrodynamics, 14th ACM SIG- GRAPH/Eurographics Symp. on Computer Animation, ACM, pp. 147-155,2015.

  9. Bender, J., Muller, M., Otaduy, M.A., Teschner, M., and Macklin, M., A Survey on Position-Based Simulation Methods in Computer Graphics, Comput. Graph. Forum, vol. 33, pp. 228-251,2014.

  10. Brousset, M., Darles, E., Meneveaux, D., Poulin, P., and Crespin, B., Simulation and Control of Breaking Waves Using an External Force Model, Comput. Graph, vol. 57, pp. 102-111,2016.

  11. Cornelis, J., Bender, J., Gissler, C., Ihmsen, M., and Teschner, M., An Optimized Source Term Formulation for Incompressible SPH, Visual Comput, pp. 1-12,2018.

  12. Dyken, C., Ziegler, G., Theobalt, C., and Seidel, H.-P., HistoPyramids in Iso-Surface Extraction (MPI-I-2007-4-006), Saarbrucken: Max-Planck-Institut fur Informatik, Germany, 2007.

  13. Ellero, M., Serrano, M., and Espanol, P., Incompressible Smoothed Particle Hydrodynamics, J. Comput. Phys, vol. 226, no. 2, pp. 1731-1752,2007.

  14. Ghia, U., Ghia, K.N., and Shin, C., High-Resolutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method, J. Comput. Phys., vol. 48, no. 3, pp. 387-411,1982.

  15. Gingold, R.A. and Monaghan, J.J., Smoothed Particle Hydrodynamics: Theory and Application to Non- Spherical Stars, Monthly Noticed Roy. Astron. Soc, vol. 181, pp. 375-389,1977.

  16. Goswami, P., Schlegel, P., Solenthaler, B., and Pajarola, R., Interactive SPH Simulation and Rendering on the GPU, ACM SIG-GRAPH/Eurographics Symp. on Computer Animation, Eurographics Association, pp. 55-64,2010.

  17. Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., and Teschner, M., Implicit Incompressible SPH, IEEE Trans. Visual. Comput. Graph, vol. 20, no. 3, pp. 426-435,2014a.

  18. Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M., SPH Fluids in Computer Graphics, State-of-the-Art Report-Eurographics 2014, vol. 2,2014b.

  19. Isshiki, M., Asai, M., Eguchi, S., and O-Tani, H., 3D Tsunami Run-Up Simulation and Visualization Using Particle Method with GIS-Based Geography Model, J. Earthquake Tsunami, vol. 10, no. 5, p. 1640020, 2016.

  20. Kang, N. and Sagong, D., Incompressible SPH Using the Divergence-Free Condition, Comput. Graph. Forum, vol. 33, pp. 219-228,2014.

  21. Khayyer, A., Gotoh, H., and Shao, S., Corrected Incompressible SPH Method for Accurate Water-Surface Tracking in Breaking Waves, Coastal Eng., vol. 55, no. 3, pp. 236-250,2008.

  22. Lee, E.S., Moulinec, C., Xu, R., Violeau, D., Laurence, D., and Stansby, P., Comparisons of Weakly Com-pressible and Truly Incompressible Algorithms for the SPH Mesh Free Particle Method, J. Comput. Phys, vol. 227, no. 18, pp. 8417-8436,2008.

  23. Li, C., Pickup, D., Saunders, T., Cosker, D., Marshall, D., Hall, P., and Willis, P., Water Surface Modeling from a Single Viewpoint Video, IEEE Trans. Visual. Comput. Graph., vol. 19, no. 7, pp. 1242-1251, 2013.

  24. Mercier, O., Beauchemin, C., Thuerey, N., Kim, T., and Nowrouzezahrai, D., Surface Turbulence for Particle-Based Liquid Simulations, ACM Trans. Graph. (TOG), vol. 34, no. 6, p. 202,2015.

  25. Morris, J.P., Fox, P. J., and Zhu, Y, Modeling Low Reynolds Number Incompressible Flows Using SPH, J. Comput. Phys, vol. 136, no. 1, pp. 214-226,1997.

  26. Peer, A., Ihmsen, M., Cornelis, J., and Teschner, M., An Implicit Viscosity Formulation for SPH Fluids, ACM Trans. Graph. (TOG), vol. 34, no. 4, p. 114,2015.

  27. Prakash, M., Cleary, P.W., Pyo, S.H., and Woolard, F., A New Approach to Boiling Simulation Using a Discrete Particle based Method, Comput. Graph., vol. 53, pp. 118-126,2015.

  28. Raveendran, K., Wojtan, C., and Turk, G., Hybrid Smoothed Particle Hydrodynamics, ACM SIG-GRAPH/Eurographics Symp. on Computer Animation, ACM, pp. 33-42,2011.

  29. Ren, B., Yan, X., Yang, T., Li, C.F., Lin, M.C., and Hu, S.M., Fast SPH Simulation for Gaseous Fluids, Visual Comput, vol. 32, no. 4, pp. 523-534,2016.

  30. Schechter, H. and Bridson, R., Ghost SPH for Animating Water, ACM Trans. Graph. (TOG), vol. 31, no. 4, p. 61, 2012.

  31. Schoenberg, I.J., Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions, Part B-On the Problem of Osculatory Interpolation. A Second Class of Analytic Approximation Formulae, Quart. Appl. Math, vol. 4, no. 2, pp. 112-141,1946.

  32. Schubert, N., Axer, M., Pietrzyk, U., and Amunts, K., 3D Polarized Light Imaging Portrayed: Visualization of Fiber Architecture Derived from 3D-PLI, High Resolution Neuroimaging Basic Physical Principles and Clinical Applications, A.M. Halefoglu, Ed.,Rijeka, Croatia: InTechOpen, 2018.

  33. Shao, S. and Lo, E.Y., Incompressible SPH Method for Simulating Newtonian and Non-Newtonian Flows with a Free Surface, Adv. Water Res, vol. 26, no. 7, pp. 787-800,2003.

  34. Takahashi, T., Dobashi, Y., Nishita, T., and Lin, M.C., An Efficient Hybrid Incompressible SPH Solver with Interface Handling for Boundary Conditions, Comput. Graph. Forum, vol. 37, pp. 313-324,2018.

  35. Winchenbach, R., Hochstetter, H., and Kolb, A., Constrained Neighbor Lists for SPH-Based Fluid Simulations, Symp. Comput. Anim., pp. 49-56,2016.

  36. Winchenbach, R., Hochstetter, H., and Kolb, A., Infinite Continuous Adaptivity for Incompressible SPH, ACM Trans. Graph. (TOG), vol. 36, no. 4, p. 102,2017.

  37. Xu, X. and Yu, P., A Technique to Remove the Tensile Instability in Weakly Compressible SPH, Comput. Mech, vol. 62, no. 5, pp. 963-990,2018.

Articles with similar content:

A 3D Lattice Boltzmann Method for Simulation of Fluid Flow in Porous Media
International Journal of Fluid Mechanics Research, Vol.41, 2014, issue 3
Mehrdad Naderi Beni, Ahmad Reza Rahmati
International Heat Transfer Conference 16, Vol.6, 2018, issue
Jae-Hee Kim, Youn-Jea Kim
Improved Semi-Lagrangian Stabilizing Correction Scheme for Shallow Water Equations
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 3
Andrei Bourchtein, Ludmila Bourchtein
Second Thermal and Fluids Engineering Conference, Vol.11, 2017, issue
Qinlong Ren, Cho Lik Chan
Nanoscience and Technology: An International Journal, Vol.9, 2018, issue 3
Ahmad Reza Rahmati