Suscripción a Biblioteca: Guest
Journal of Flow Visualization and Image Processing

Publicado 4 números por año

ISSN Imprimir: 1065-3090

ISSN En Línea: 1940-4336

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00013 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.14 SJR: 0.201 SNIP: 0.313 CiteScore™:: 1.2 H-Index: 13

Indexed in

THE FINE-GRAINED MATERIAL FLOW VISUALIZATION OF THE SADDLE-SHAPE BRIQUETTING IN THE ROLLER PRESS USING COMPUTER IMAGE ANALYSIS

Volumen 28, Edición 2, 2021, pp. 69-78
DOI: 10.1615/JFlowVisImageProc.2021035864
Get accessGet access

SINOPSIS

When considering the case of agglomeration within a roller press of hard-to-briquette materials, the use of rollers which produce saddle-shape briquettes is preferred. Such a compaction unit is asymmetric, proving particularly useful for materials which are characterized by high moisture, a high compaction degree necessary for consolidation, low bulk density, the presence of hydrophobic grains−those that tend to be suspended in hoppers and dispensers or those with a high elastic deflection after pressure is removed. The flow of fine-grained material in the roller press compacting unit is a continuous subject of research. It has a significant impact on the correct course of the agglomeration process, e.g., appropriate strength parameters of the product and the intensity of wear of working surfaces. During consolidation the bulk material properties change as regards a number of measures: the Young modulus, the coefficient of external and internal friction, the side pressure coefficient, and others. Therefore the modeling of this process proves to be quite complicated. This then is the basis for performing visualization experiments in the compaction unit of a roller press in order to investigate the movement of material. The roller press was equipped with the rollers of a cavity to obtain a saddle-shape briquettes and a gravity feeder. Using the N1 Vision Builder, the received video recordings were analyzed and the average material speed distribution in the feeder was determined. The relationships between the material speed distribution and the press operation parameters are presented and analyzed.

REFERENCIAS
  1. Baiul, K.V., Synthesis of Roller Press Rational Design for Composite Solid Fuel Production, Problems Regional Energ., vol. 2, no. 43, pp. 103-116,2019. D0I:10.5281/zenodo.3367048.

  2. Baiul, K., Solodka,N., Khudyakov, A., and Vashchenko, S.V., Selection of Rational Surface Configuration for Roller Press Tires, Powder Metall Met. Ceram., vol. 7, pp. 9-21,2020. DOI: 10.1007/s11106-020-00133-w.

  3. Bembenek, M., Experimental Analysis of Consolidated Material Flow through a Roller Press with a Non-symmetrical Compaction Unit, J. Machine Construct. Mainten, vol. 2, pp. 117-122,2017a.

  4. Bembenek, M., Research and Prospects for New Areas of Using Roller Presses, Przem. Chem., vol. 96, no. 9, pp. 1845-1847,2017b. (in Polish) DOI: 10.15199/62.2017.9.3.

  5. Bembenek, M., The Use of Computer Image Analysis in Determining Material Flow in the Roller Press during Compacting of Fine-Grained Material, Comput. Methods Mater. Sci., vol. 18, no. 2, pp. 58-63, 2018.

  6. Bembenek, M. and Buczak, M., Analysis of Material Flow in the Compaction Unit of a Roller Press Using the Image Analysis Computer Software, Napedy Pojazdow: Modelowanie Komputerowe Konstrukcji i Ukladow Technologicznych, Rzeszow, Poland: Wydawnictwo Uniwersytetu Rzeszowskiego, pp. 11-21, 2019. (in Polish).

  7. Bembenek, M. and Romanyshyn, T., Operation of Briquetting Roller Presses with an Asymmetrical Compaction Unit, J. Machine Construct. Mainten., vol. 2, pp. 53-59,2018.

  8. Bembenek, M. and Wdaniec, P., Effect of Crusher Type and Its Parameters on the Dry Pranulation of Powders, Przem. Chem., vol. 98, no. 2, pp. 310-313,2019. (in Polish) DOI: 10.15199/62.2019.2.25.

  9. Bembenek, M., Wdaniec, P., and Baran, E., Production of a Granulated Mineral Fertilizer from Waste Gypsum in a Flat-Matrix Granulator, Przem. Chem., vol. 99, no. 2, pp. 236-238,2020. (in Polish) DOI: 10.15199/62.2020.2.10.

  10. Bindhumadhavan, G., Seville, J.P.K., Adams, M.J., Greenwood, R.W., and Fitzpatrick, S., Roll Compaction of a Pharmaceutical Excipient: Experimental Validation of Roling Theory for Granular Solids, Chem. Eng. Sci., vol. 60, pp. 3891-3897,2005.

  11. Drzymala, Z., Industrial Briquetting-Fundamentals and Methods, Warsaw, Poland: Elsevier Science Publishers, 1993.

  12. Dzik, T., Hryniewicz, M., Janewicz, A., and Kosturkiewicz, B., Agglomeration of Solid Fuels in a Roll Press, Przem. Chem., vol. 96, no. 9, pp. 1852-1855,2017. DOI: 10.15199/62.2017.9.5.

  13. Gara, P. and Zwolinska, B., Model of Converter Dusts and Iron-Bearing Slurries Management in Briquetting, Metalurgija, vol. 55, no. 3, pp. 515-518,2016.

  14. Hryniewicz, M., Method of Selection of Roll Presses and Elaboration of Design Criteria for Their Modern-ization or Construction, AGH University of Science and Technology, Krakow, Poland, 1997. (in Polish).

  15. Hryniewicz, M., Gara, P., and Bembenek, M., Modeling of Unitary Pressure Distribution in Compacting Process, Automatyka, vol. 15, no. 2, pp. 175-182,2011. (in Polish).

  16. Hryniewicz, M., Bembenek, M., Janewicz, A., and Kosturkiewicz, B., Agglomeration of Fine-Grained Materials in Roll Presses with Asymmetrical Compaction Unit, Przem. Chem.., vol. 94, no. 12, pp. 2223-2226,2015. (in Polish).

  17. Janewicz, A. and Kosturkiewicz, B., Visualization of Gravitational Supplying of Material into Roll Press, MonograSe Wydzialu Inzynierii Mechanicznej i Robotyki AGH, vol. 32, pp. 241-248,2006. (inPolish).

  18. Johanson, J.R., A Roling Theory for Granular Solids, J. Appl. Mech., vol. 32, no. 4, pp. 842-848,1965.

  19. Katashinskii, V.P., Analytical Determination of Specific Pressure during the Roling of Metal Powders, Sov. Powder Metall. Metal. Ceram., vol. 5, no. 10, pp. 765-772,1966.

  20. Kosturkiewicz, B., Janewicz, A., and Hryniewicz, M., Two-Stage Granulation Process of Fertilizers, Przem. Chem, vol. 96, no. 9, pp. 1873-1876,2017. (in Polish) DOI: 10.15199/62.2017.9.10.

  21. Krok, A., Peciar, M., and Fekete, R., Using the DPIV Optical Technique to Measure the Velocity of Powder Material in the Space between the Rollers in a Roll Compactor, Powder Technol, vol. 262, pp. 131-141, 2014.

  22. Kumar, D.S., Sah, R., Sekhar, V.R., and Vishwanath, S.C., Development and Use of Mill Scale Briquettes in BOF, Ironmaking Steelmaking, vol. 44, no. 2, pp. 134-139, 2017. DOI: 10.1080/03019233.2016.1165499.

  23. Lecompte, T., Doremus, P., Thomas, G., Perier-Camby, L., Le Thiesse, J.C., Masteau, J.C., and Debove, L., Dry Granulation of Organic Powders-Dependence of Pressure 2D-Distribution on Pifferent Process Parameters, Chem. Eng. Sci., vol. 60, pp. 3933-3940,2005.

  24. Loginov, Yu.N., Babailov, N.A., and Pervukhina, D.N., Physical Modeling of Roller Pressing with Asymmetric Effects on Compacted Material, Izv. Vyssh. Uchebn. Zaved, Chern. Metall., vol. 58, no. 3, pp. 186-191,2015. (in Russian).

  25. Loginov, Yu.N., Bourkine, S.P., and Babailov, N.A., Cinematics and Volume Deformations during Roll Press Briquetting, J. Mater. Proces. Technol, vol. 118, pp. 151-157,2001.

  26. Peter, S., Lammens, R.F., and Steffens, K.J., Roller Compaction/Dry Granulation: Use of the Thin Layer Model for Predicting Densities and Forces during Roller Compaction, Powder Technol., vol. 199, pp. 165-175,2010.

  27. Pietsch, W., Size Enlargement by Agglomeration, New York, NY: John Wiley & Sons, 1991.

  28. Pishnamazi, M., Casilagan, S., Clancy, C., Shirazian, S., Iqbal, J., Egan, D., Edlin, Ch., Croker, D., Walker, G., and Collins, M., Microcrystalline Cellulose, Lactose and Lignin Blends: Process Mapping of Dry Granulation via Roll Compaction, Powder Technol., vol. 341, pp. 38-50, 2019. DOI: 10.1016/j.powtec.2018.07.003.

  29. Yehia, K.A., Estimation of Roll Press Design Parameters Based on the Assessment of a Particular Nip Region, Powder. Technol, vol. 177, pp. 148-153,2007.

  30. Zinchuk, A.V., Mullarney, M.P., and Hancock, B.C., Simulation of Roller Compaction Using a Laboratory Scale Compaction Simulator, Int. J. Pharmaceut., vol. 269, pp. 403-415,2004.

CITADO POR
  1. Pawlik Jan, Wróblewska-Pawlik Aleksandra, Bembenek Michał, The Volumetric Wear Assessment of a Mining Conical Pick Using the Photogrammetric Approach, Materials, 15, 16, 2022. Crossref

  2. Bembenek Michał, Mandziy Teodor, Ivasenko Iryna, Berehulyak Olena, Vorobel Roman, Slobodyan Zvenomyra, Ropyak Liubomyr, Multiclass Level-Set Segmentation of Rust and Coating Damages in Images of Metal Structures, Sensors, 22, 19, 2022. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain