Suscripción a Biblioteca: Guest
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

Publicado 4 números por año

ISSN Imprimir: 1093-3611

ISSN En Línea: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

SIMULATIONS AND MEASUREMENTS OF THE PRE-ARCING TIMES IN HBC FUSES UNDER TYPICAL ELECTRIC FAULTS

Volumen 14, Edición 3, 2010, pp. 255-270
DOI: 10.1615/HighTempMatProc.v14.i3.50
Get accessGet access

SINOPSIS

This work deals with the comparison between calculations and measurements of pre-arcing times in High Breaking Capacity fuses under typical fault current conditions. This paper also describes the temperature evolution and the Joule energy dissipated in a fuse element during the pre-arcing time. By varying typical electrical parameters, namely the closing angle and the power factor, we show that various prospective currents such as those observed in industrial case can be fairly simulated. The pre-arcing time and then the clearing of the fault current are shown to be deeply dependent on these electrical characteristics. We exhibit simulated results of prospective current and supply voltage waves for given closing angles under two typical power factors which are compared with the experimental ones. A comparison between simulated pre-arcing times with experimental ones shows some discrepancies and a discussion on the numerical assumptions is made.

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain