Suscripción a Biblioteca: Guest
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

Publicado 4 números por año

ISSN Imprimir: 1093-3611

ISSN En Línea: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

Thermal and dimensional characteristics of vapor-plasma plume and layer deposition in laser-aided rapid manufacturing

Volumen 4, Edición 2, 2000, 40 pages
DOI: 10.1615/HighTempMatProc.v4.i2.20
Get accessGet access

SINOPSIS

Three-dimensional structures of copper, Ti-6Al-4V, aluminum, and stainless steel 304 were fabricated by melting the powders of these materials with a CO2 laser beam. A vapor-plasma plume is generated at the top of the melt layer. The emission spectra of the plume were recorded using an optical multichannel analyzer, and the plume temperatures are determined to be in the range of 4920 K to 6720 K. A one-dimensional model is developed to calculate the plume temperature, process parameters and melt pool characteristics. The model accounts for the transmission of the laser beam through the plume, energy transfer in the molten phase and the Stefan conditions at the solid-liquid and liquid-vapor interfaces. The surface temperature at the molten surface is found to exceed the normal boiling temperature causing the pressure to be higher than one atmospheric pressure. The calculated plume temperatures are in good agreement with the values obtained from the spectral data. Also, the model predictions for remelt layer depth, deposition height and plasma height compare well with experimental data.

CITADO POR
  1. Kahlen Franz-Josef, Kar Aravinda, Residual stresses in laser-deposited metal parts, International Congress on Applications of Lasers & Electro-Optics, 2000. Crossref

  2. Kahlen Franz-Josef, von Klitzing Andreas, Kar Aravinda, Hardness, chemical, and microstructural studies for laser-fabricated metal parts of graded materials, Journal of Laser Applications, 12, 5, 2000. Crossref

  3. Kahlen Franz-Josef, von Klitzing Andreas, Kar Aravinda, Hardness, chemical and microstructural studies for laser-fabricated metal parts of graded materials, International Congress on Applications of Lasers & Electro-Optics, 1999. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain