Suscripción a Biblioteca: Guest
Plasma Medicine

Publicado 4 números por año

ISSN Imprimir: 1947-5764

ISSN En Línea: 1947-5772

SJR: 0.216 SNIP: 0.263 CiteScore™:: 1.4 H-Index: 24

Indexed in

Cold Atmospheric Pressure Plasma as a Tool to Control the Proliferation of Various Mammalian Cells Including Human Mesenchymal Stem Cells for Regenerative Medicine

Volumen 10, Edición 4, 2020, pp. 203-216
DOI: 10.1615/PlasmaMed.2021036029
Get accessDownload

SINOPSIS

Cell proliferation is one of the most critical processes for development, tissue regeneration, and wound healing, and is tightly linked with cell differentiation and migration. Also, the regulation of cell proliferation is essential for appropriate tissue regeneration and improved culture system, which requires an effective control tool for cell proliferation both in vivo and in vitro. Recently, cold atmospheric pressure plasma (CAP) has been shown to have considerable effects on cell proliferation that have been attributed to the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Many studies on CAP application suggest that CAP can be developed as an efficient tool to activate proliferation in vitro for personalized cell therapies and in vivo for wound healing. In this review, we discuss how CAP has been applied to control proliferation in various mammalian cells and its molecular mechanisms for biomedical applications. In our study, we demonstrated that nitric oxide (NO) from CAP is the major factor for activating the proliferation of human mesenchymal stem cells. When exposed to CAP, many different types of human cells displayed highly increased expression of cytokines and growth factors both in vitro and in vivo, strongly suggesting that common mechanisms and components are involved in CAP-induced cell proliferation. Furthermore, CAP induced epigenetic modifications in human mesenchymal stem cells to boost the expression of cytokines and growth factors, thereby promoting cell proliferation. Further studies are needed to verify that NO of the CAP and epigenetic modifications are the common mechanism of action of CAP in culture and in wounded tissues. In addition, the molecular mechanism of the epigenetic modifications induced by CAP treatment should be investigated to develop CAP as an applicable tool for regenerative medicine and wound healing.

REFERENCIAS
  1. Takeuchi T, Nakamura H. Cell proliferation and development. Dev Growth Differ. 2014;56(5):323.

  2. Lander AD. Pattern, growth, and control. Cell. 2011;144(6):955-69.

  3. Duronio RJ, Xiong Y. Signaling pathways that control cell proliferation. CSH Perspect Biol. 2013;5(3):a008904.

  4. Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017;17(2):93-115.

  5. Letai A. Apoptosis and cancer. Annu Rev Canc Biol. 2017;1:275-94.

  6. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314-21.

  7. Krafts KP. Tissue repair. The hidden drama. Organogenesis. 2010;6(4):225-33.

  8. Hladik D, Hofig I, Oestreicher U, Beckers J, Matjanovski M, Bao XW, Scherthan H, Atkinson MJ, Rosemann M. Long-term culture of mesenchymal stem cells impairs ATM-dependent recognition of DNA breaks and increases genetic instability. Stem Cell Res Ther. 2019;10.

  9. Franzen J, Zirkel A, Blake J, Rath B, Benes V, Papantonis A, Wagner W. Senescence-associated DNA methylation is stochastically acquired in subpopulations of mesenchymal stem cells. Aging Cell. 2017;16(1):183-91.

  10. Xie XY, Hiona A, Lee AS, Cao F, Huang M, Li ZJ, Cherry A, Pei XT, Wu JC. Effects of long-term culture on human embryonic stem cell aging. Stem Cells Dev. 2011;20(1):127-38.

  11. Park YB, Kim YY, Oh SK, Chung SG, Ku SY, Kim SH, Choi YM, Moon SY. Alterations of proliferative and differentiation potentials of human embryonic stem cells during long-term culture. Exp Mol Med. 2008;40(1):98-108.

  12. Venkatachalam G, Surana U, Clement MV. Replication stress-induced endogenous DNA damage drives cellular senescence induced by a sub-lethal oxidative stress. Nucleic Acids Res. 2017;45(18):10564-82.

  13. Lukasova E, Rezacova M, Bacikova A, Sebejova L, Vavrova J, Kozubek S. Distinct cellular responses to replication stress leading to apoptosis or senescence. FEBS Open Bio. 2019;9(5):870-90.

  14. Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG, Zuffardi O, Locatelli F. Human bone marrow-derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res. 2007;67(19):9142-9.

  15. Ng CP, Sharif ARM, Heath DE, Chow JW, Zhang CBY, Chan-Park MB, Hammond PT, Chan JKY, Griffith LG. Enhanced ex vivo expansion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM. Biomaterials. 2014;35(13):4046-57.

  16. Walasek MA, van Os R, de Haan G. Hematopoietic stem cell expansion: Challenges and opportunities. Ann NY Acad Sci. 2012;1266:138-50.

  17. Ahn HJ, Kim KI, Hoan NN, Kim CH, Moon E, Choi KS, Yang SS, Lee JS. Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma. PLoS One. 2014;9(1):e86173.

  18. Ahn HJ, Kim KI, Kim G, Moon E, Yang SS, Lee JS. Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals. PLoS One. 2011;6(11):e28154.

  19. Kim GJ, Kim W, Kim KT, Lee JK. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma. Appl Phys Lett. 2010;96(2):021502.

  20. Ma YH, Ha CS, Hwang SW, Lee HJ, Kim GC, Lee KW, Song K. Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways. PLoS One. 2014;9(4):e91947.

  21. Panngom K, Baik KY, Nam MK, Han JH, Rhim H, Choi EH. Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma. Cell Death Dis. 2013;44(5):e642.

  22. Choi JW, Kang SU, Kim YE, Park JK, Yang SS, Kim YS, Lee YS, Lee Y, Kim CH. Novel therapeutic effects of non-thermal atmospheric pressure plasma for muscle regeneration and differentiation. Sci Rep-UK. 2016;6:28829.

  23. Won HR, Kang SU, Kim HJ, Jang JY, Shin YS, Kim CH. Non-thermal plasma treated solution with potential as a novel therapeutic agent for nasal mucosa regeneration. Sci Rep-UK. 2018;8:13754.

  24. Park J, Lee H, Lee HJ, Kim GC, Kim DY, Han S, Song K. Non-thermal atmospheric pressure plasma efficiently promotes the proliferation of adipose tissue-derived stem cells by activating NO-response pathways. Sci Rep-UK. 2016;6:39298.

  25. Park J, Lee H, Lee HJ, Kim GC, Kim SS, Han S, Song K. Non-thermal atmospheric pressure plasma is an excellent tool to activate proliferation in various mesoderm-derived human adult stem cells. Free Radical Biol Med. 2019;134:374-84.

  26. Park J, Suh D, Tang T, Lee HJ, Roe JS, Kim GC, Han S, Song K. Non-thermal atmospheric pressure plasma induces epigenetic modifications that activate the expression of various cytokines and growth factors in human mesoderm-derived stem cells. Free Radical Biol Med. 2020;148:108-22.

  27. Bekeschus S, Masur K, Kolata J, Wende K, Schmidt A, Bundscherer L, Barton A, Kramer A, Broker B, Weltmann KD. Human mononuclear cell survival and proliferation is modulated by cold atmospheric plasma jet. Plasma Process Polym. 2013;10(8):706-13.

  28. Bundscherer L, Wende K, Ottmuller K, Barton A, Schmidt A, Bekeschus S, Hasse S, Weltmann KD, Masur K, Lindequist U. Impact of non-thermal plasma treatment on MAPK signaling pathways of human immune cell lines. Immunobiology. 2013;218(10):1248-55.

  29. Haertel B, Volkmann F, von Woedtke T, Lindequist U. Differential sensitivity of lymphocyte subpopulations to non-thermal atmospheric-pressure plasma. Immunobiology. 2012;217(6):628-33.

  30. Shi XM, Zhang GJ, Yuan YK, Ma Y, Xu GM, Yang Y. Effects of low-temperature atmospheric air plasmas on the activity and function of human lymphocytes. Plasma Process Polym. 2008;5(5):482-8.

  31. Kang SU, Kim HJ, Kim DH, Han CH, Lee YS, Kim CH. Nonthermal plasma treated solution inhibits adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes via ER stress signal suppression. Sci Rep-UK. 2018;8:2277.

  32. Park JK, Kim YS, Kang SU, Lee YS, Won HR, Kim CH. Nonthermal atmospheric plasma enhances myoblast differentiation by eliciting STAT3 phosphorylation. FASEB J. 2019;33(3):4097-106.

  33. Tominami K, Kanetaka H, Sasaki S, Mokudai T, Kaneko T, Niwano Y. Cold atmospheric plasma enhances osteoblast differentiation. PLoS One. 2017;12(7):e0180507.

  34. Arndt S, Unger P, Wacker E, Shimizu T, Heinlin J, Li YF, Thomas HM, Morfill GE, Zimmermann JL, Bosserhoff AK, Karrer S. Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS One. 2013;8(11):e79325.

  35. Choi JH, Song YS, Song K, Lee HJ, Hong JW, Kim GC. Skin renewal activity of non-thermal plasma through the activation of beta-catenin in keratinocytes. Sci Rep-UK. 2017;7:6146.

  36. Liu JR, Xu GM, Shi XM, Zhang GJ. Low temperature plasma promoting fibroblast proliferation by activating the NF-kappa B pathway and increasing cyclinD1 expression. Sci Rep-UK. 2017;7:11698.

  37. Schmidt A, Dietrich S, Steuer A, Weltmann KD, von Woedtke T, Masur K, Wende K. Non-thermal plasma activates human keratinocytes by stimulation of antioxidant and phase II pathways. J Biol Chem. 2015;290(11):6731-50.

  38. Shi XM, Xu GM, Zhang GJ, Liu JR, Wu YM, Gao LG, Yang Y, Chang ZS, Yao CW. Low-temperature plasma promotes fibroblast proliferation in wound healing by ROS-activated NF-kappa B signaling pathway. Curr Med Sci. 2018;38(1):107-14.

  39. Laroussi M. Cold plasma in medicine and healthcare: The new frontier in low temperature plasma applications. Front Phys-Lausanne. 2020;8.

  40. Lunov O, Zablotskii V, Churpita O, Chanova E, Sykova E, Dejneka A, Kubinova S. Cell death induced by ozone and various non-thermal plasmas: Therapeutic perspectives and limitations. Sci Rep-UK. 2014;4:7129.

  41. Duchesne C, Frescaline N, Lataillade J-J, Rousseau A. Comparative study between direct and Indirect treatment with cold atmospheric plasma on in vitro and in vivo models of wound healing. Plasma Med. 2018;8(4):379-401.

  42. Brun P, Pathak S, Castagliuolo I, Palu G, Brun P, Zuin M, Cavazzana R, Martines E. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells. PLoS One. 2014;9(8):e104397.

  43. Lee HW, Park GY, Seo YS, Im YH, Shim SB, Lee HJ. Modelling of atmospheric pressure plasmas for biomedical applications. J Phys D Appl Phys. 2011;44(5).

  44. Duchesne C, Frescaline N, Lataillade J, Rousseau A. Comparative study between direct and indirect treatment with cold atmospheric plasma on in vitro and in vivo models of wound healing. Plasma Med. 2018;8(4):379-401.

  45. Kaushik NK, Ghimire B, Li Y, Adhikari M, Veerana M, Kaushik N, Jha N, Adhikari B, Lee SJ, Masur K, von Woedtke T, Weltmann KD, Choi EH. Biological and medical applications of plasma-activated media, water and solutions. Biol Chem. 2018;400(1):39-62.

  46. Gorbanev Y, Privat-Maldonado A, Bogaerts A. Analysis of short-lived reactive species in plasma-air-water systems: The dos and the do nots. Anal Chem. 2018;90(22):13151-8.

  47. Chagastelles PC, Nardi NB. Biology of stem cells: An overview. Kidney Int Suppl. 2011;1(3):63-7.

  48. Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z. Stem cells: Past, present, and future. Stem Cell Res Ther. 2019;10.

  49. Clarke MF, Fuller M. Stem cells and cancer: Two faces of Eve. Cell. 2006;124(6):1111-5.

  50. Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: Origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol. 2001;17:387-403.

  51. Hou YN, Li CY. Stem/progenitor cells and their therapeutic application in cardiovascular disease. Front Cell Dev Biol. 2018;6.

  52. Mirzaei H, Sahebkar A, Sichani LS, Moridikia A, Nazari S, Nahand JS, Salehi H, Stenvang J, Masoudifar A, Mirzaei HR, Jaafari MR. Therapeutic application of multipotent stem cells. J Cell Physiol. 2018;233(4):2815-23.

  53. Montagnani S, Rueger MA, Hosoda T, Nurzynska D. Adult stem cells in tissue maintenance and regeneration. Stem Cells Int. 2016;2016.

  54. Rohban R, Pieber TR. Mesenchymal stem and progenitor cells in regeneration: Tissue specificity and regenerative potential. Stem Cells Int. 2017;2017.

  55. Hombach-Klonisch S, Panigrahi S, Rashedi I, Seifert A, Alberti E, Pocar P, Kurpisz M, Schulze-Osthoff K, Mackiewicz A, Los M. Adult stem cells and their trans-differentiation potential-perspectives and therapeutic applications. J Mol Med. 2008;86(12):1301-14.

  56. Rizvanov AA, Persson J, Sahin F, Bellusci S, Oliveira PJ. Hematopoietic and mesenchymal stem cells in biomedical and clinical applications. Stem Cells Int. 2016;2016.

  57. Han SM, Han SH, Coh YR, Jang G, Ra JC, Kang SK, Lee HW, Youn HY. Enhanced proliferation and differentiation of Oct4-and Sox2-overexpressing human adipose tissue mesenchymal stem cells. Exp Mol Med. 2014;46.

  58. Kim DS, Lee MW, Lee TH, Sung KW, Koo HH, Yoo KH. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells. Biomed Rep. 2017;6(3):300-6.

  59. Sun Z, Han Q, Zhu YS, Li ZY, Chen B, Liao LM, Bian CJ, Li J, Shao CS, Zhao RC. NANOG has a role in mesenchymal stem cells' immunomodulatory effect. Stem Cells Dev. 2011;20(9):1522-9.

  60. Tower J. Stress and stem cells. WIREs Dev Biol. 2012;1(6):789-802.

  61. Estrada JC, Torres Y, Benguria A, Dopazo A, Roche E, Carrera-Quintanar L, Perez RA, Enriquez JA, Torres R, Ramirez JC, Samper E, Bernad A. Human mesenchymal stem cell-replicative senescence and oxidative stress are closely linked to aneuploidy. Cell Death Dis. 2013;4.

  62. Eggers B, Marciniak J, Memmert S, Kramer FJ, Deschner J, Nokhbehsaim M. The beneficial effect of cold atmospheric plasma on parameters of molecules and cell function involved in wound healing in human osteoblast-like cells in vitro. Odontology. 2020;108(4):607-16.

  63. Werner S, Krieg T, Smola H. Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol. 2007;127(5):998-1008.

  64. Wojtowicz AM, Oliveira S, Carlson MW, Zawadzka A, Rousseau CF, Baksh D. The importance of both fibroblasts and keratinocytes in a bilayered living cellular construct used in wound healing. Wound Repair Regen. 2014;22(2):246-55.

  65. Bartkova J, Gron B, Dabelsteen E, Bartek J. Cell-cycle regulatory proteins in human wound healing. Arch Oral Biol. 2003;48(2):125-32.

  66. Brugues A, Anon E, Conte V, Veldhuis JH, Gupta M, Colombelli J, Munoz JJ, Brodland GW, Ladoux B, Trepat X. Forces driving epithelial wound healing. Nat Phys. 2014;10(9):683-90.

  67. Stone RC, Pastar I, Ojeh N, Chen V, Liu S, Garzon KI, Tomic-Canic M. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 2016;365(3):495-506.

  68. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178-96.

  69. Kobayashi Y. The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation. J Leukocyte Biol. 2010;88(6):1157-62.

  70. Schwentker A, Vodovotz Y, Weller R, Billiar TR. Nitric oxide and wound repair: Role of cytokines? Nitric Oxide. 2002;7(1):1-10.

  71. Socco S, Bovee RC, Palczewski MB, Hickok JR, Thomas DD. Epigenetics: The third pillar of nitric oxide signaling. Pharmacol Res. 2017;121:5-8.

  72. Vasudevan D, Bovee RC, Thomas DD. Nitric oxide, the new architect of epigenetic landscapes. Nitric Oxide. 2016;59:54-62.

  73. Mora-Castilla S, Tejedo JR, Hmadcha A, Cahuana GM, Martin F, Soria B, Bedoya FJ. Nitric oxide repression of Nanog promotes mouse embryonic stem cell differentiation. Cell Death Differ. 2010;17(6):102-33.

  74. Nott A, Riccio A. Nitric oxide-mediated epigenetic mechanisms in developing neurons. Cell Cycle. 2009;8(5):725-30.

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain