Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Plasma Medicine
SJR: 0.278 SNIP: 0.183 CiteScore™: 0.57

ISSN Imprimir: 1947-5764
ISSN En Línea: 1947-5772

Plasma Medicine

DOI: 10.1615/PlasmaMed.2018028857
pages 321-333

Dielectric Barrier Discharge Plasma Activates Persulfate to Degrade Norfloxacin: Mechanism and Degradation Pathways

Cao Fang
Anhui Jianzhu University, Hefei, China; Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
Qing Huang
Anhui Jianzhu University, Hefei, China; Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China

SINOPSIS

In these studies, sodium persulfate was activated by atmospheric pressure nonthermal dielectric barrier discharge (DBD) plasma to degrade norfloxacin in aqueous solution. Our results showed that the degradation of norfloxacin could be remarkably enhanced with the addition of sodium persulfate to the norfloxacin solution treated by DBD in an oxygen atmosphere. The relationship between the degradation efficiency and the concentration of sodium persulfate is examined, and the possible degradation reaction pathways and mechanisms are discussed.

REFERENCIAS

  1. Zhao J, Wu Y, Wu X, Wang C, Huang H, Lu J, Wu X, Cui J, Li C, Yan Y, Dong H. Insights into high-efficiency molecularly imprinted nanocomposite membranes by channel modification for selective enrichment and separation of norfloxacin. J Taiwan Inst Chem Eng. 2018;89:198-07.

  2. Bai J, Li Y, Jin P, Wang J, Liu L. Facile preparation 3D ZnS nanospheres-reduced graphene oxide composites for enhanced photodegradation of norfloxacin. J Alloys Compd. 2017;729:809-15.

  3. Lindberg RH, Olofsson U, Rendahl P, Johansson MI, Tysklind M, Andersson BAV. Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environ Sci Technol. 2006;40:1042-8.

  4. Wang B, Jiang Y, Li F, Yang D. Preparation of biochar by simultaneous carbonization, magnetization and activation fornorfloxacinremoval inwater. Bioresour Technol. 2017;233:159-65.

  5. Wan Y, Liu X, Liu P, Zhao L, Zou W. Optimization adsorption of norfloxacin onto polydopamine microspheres from aqueous solution: kinetic, equilibrium and adsorption mechanism studies. Sci Total Environ. 2018;639:428-37.

  6. Yan B, Niu CH. Adsorption behavior of norfloxacin and site energy distribution based on the Dubinin-Astakhov isotherm. Sci Total Environ. 2018;631-632:1525-33.

  7. Tang J, Wang R, Liu M, Zhang Z, Song Y, Xue S, Zhao Z, Dionysiou DD. Construction of novel Z-scheme Ag/FeTiO3/Ag/BiFeO3 photocatalyst with enhanced visible-light-driven photocatalytic performance for degradation ofnorfloxacin. Chem Eng J. 2018;351:1056-66.

  8. Wang J, Tang L, Zeng G, Zhou Y, Deng Y, Fan C, Gong J, Liu Y. Effect of bismuth tungstate with different hierarchical architectures on photocatalytic degradation of norfloxacin under visible light. Trans Nonferrous Metals Soc China. 2017;27:1794-803.

  9. Wen X, Niu C, Huang D, Zhang L, Liang C, Zeng G. Study of the photocatalytic degradation pathway of norfloxacin and mineralization activity using a novel ternary Ag/AgCl-Ce02 photocatalyst. J Catalysis. 2017;355:73-86.

  10. Mora-Gomez J, Ortega E, Mestre S, Perez-Herranz V, Garda-Gabaldon M. Electrochemical degradation of norfloxacin using BDD and new Sb-doped Sn02 ceramic anodes in an electrochemical reactor in the presence and absence of a cation-exchange membrane. Sep Purif Technol. 2019;208:68-75.

  11. Da Silva SW, Navarro EMO, Rodrigues MAS, Bernardes AM, Perez-Herranz V. The role of the anode material and water matrix in the electrochemical oxidation of norfloxacin. Chemosphere. 2018; 210:615-23.

  12. Zorita S, Martensson L, Mathiasson L. Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Sci Total Environ. 2009;407:2760-70.

  13. Tegze A, Sagi G, Kovacs K, Homlok R, Toth T, Mohacsi-Farkas C, Wojnarovits L, Takacs E. Degradation of fluoroquinolone antibiotics during ionizing radiation treatment and assessment of antibacterial activity, toxicity and biodegradability of the products. Radiat Phys Chem. 2018;147:101-5.

  14. Amorim CL, Maia AS, Mesquita RB, Rangel AO, van Loosdrecht MC, Tiritan ME, Castro PM. Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, nor-floxacinandciprofloxacin. WaterRes. 2014;50:101-13.

  15. Santos LVDS, Meireles AM, Lange LC. Degradation of antibiotics norfloxacin by Fenton, UV and UV/H2O2. J Environ Manage. 2015;154:8-12.

  16. Liu X, Zhou Y, Zhang J, Luo L, Yang Y, Huang H, Peng H, Tang L, Mu Y. Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: mechanism study and research gaps. Chem Eng J. 2018;347:379-97.

  17. Zhou T, Zou X, Wu X, Mao J, Wang J. Synergistic degradation of antibiotic norfloxacin in a novel heterogeneous sonochemical Fe0/tetraphosphate Fenton-like system. Ultrason Sonochem. 2017;37:320-27.

  18. Van Doorslaer X, Dewulf J, Van Langenhove H, Demeestere K. Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Sci Total Environ. 2014;500-501:250-69.

  19. Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int. 2009;35:402-17.

  20. Wen Y, Shen C, Ni Y, Tong S, Yu F. Glow discharge plasma in water: a green approach to enhancing ability of chitosan for dye removal. J Hazard Mater. 2012;201-202:162-9.

  21. Wu J, Li P, Tao D, Zhao H, Sun R, Ma F, Zhang B. Effect of solution plasma process with hydrogen peroxide on the degradation and antioxidant activity of polysaccharide from Auricularia auricula. Int J Biol Macromol. 2018;117:1299-304.

  22. Slamani S, Abdelmalek F, Ghezzar MR, Addou A. Initiation of Fenton process by plasma gliding arc discharge for the degradation of paracetamol in water. J Photochem Photobiol A: Chem. 2018;359:1-10.

  23. Chen J, Du Y, Shen Z, Lu S, Su K, Yuan S, Hu Z, Zhang A, Feng J. Non-thermal plasma and BiP04 induced degradation of aqueous crystal violet. Sep Purif Technol. 2017;179:135-44.

  24. Wang J, Sun Y, Feng J, Xin L, Ma J. Degradation of triclocarban in water by dielectric barrier discharge plasma combined with TiO2/activated carbon fibers: effect of operating parameters and byproducts identification. ChemEng J. 2016;300:36-46.

  25. Zhang H, Zhang Q, Miao C, Huang Q. Degradation of 2,4-dichlorophenol in aqueous solution by dielectric barrier discharge: effects of plasma-working gases, degradation pathways and toxicity as-sessment. Chemosphere. 2018;204:351-8.

  26. Liu Y, Zhang H, Sun J, Liu J, Shen X, Zhan J, Zhang A, Ognier S, Cavadias S, Li P. Degradation of aniline in aqueous solution using non-thermal plasma generated in microbubbles. Chem Eng J. 2018;345:679-87.

  27. Zhang Q, Zhang H, Zhang Q, Huang Q. Degradation of norfloxacin in aqueous solution by atmospheric-pressure non-thermal plasma: mechanism and degradation pathways. Chemosphere. 2018;210:433-9.

  28. Chen S, Xiong P, ZhanW, Xiong L. Degradation of ethylthionocarbamate by pyrite-activated persulfate. Miner Eng. 2018;122:38-43.

  29. Zrinyi N, Pham AL. Oxidation ofbenzoic acid by heat-activated persulfate: effect oftemperature on transformation pathway andproductdistribution. WaterRes. 2017;120:43-51.

  30. Fang Z, Chelme-Ayala P, Shi Q, Xu C, Gamal El-Din M. Degradation of naphthenic acid model compounds in aqueous solution by UV activated persulfate: influencing factors, kinetics and reaction mechanisms. Chemosphere. 2018;211:271-7.

  31. Ke Z, Huang Q, Zhang H, Yu Z. Reduction and removal of aqueous Cr(VI) by glow discharge plasma at the gas-solution interface. Environ Sci Technol. 2011;45:7841-7.

  32. Zhang H, Yang L, Yu Z, Huang Q. Inactivation of Microcystis aeruginosa by DC glow discharge plasma: impacts on cell integrity, pigment contents and microcystins degradation. J Hazard Mater. 2014;268:33-42.

  33. Shang K, Wang X, Li J, Wang H, Lu N, Jiang N, Wu Y. Synergetic degradation of Acid Orange 7 (AO7) dye by DBD plasma and persulfate. Chem Eng J. 2017;311:378-4.

  34. Chen J, Feng J, Lu S, Shen Z, Du Y, Peng L, Nian P, Yuan S, Zhang A. Non-thermal plasma and Fe2+ activated persulfate ignited degradation of aqueous crystal violet: degradation mechanism and artificial neural network modeling. Sep Purif Technol. 2018;191:75-85.

  35. Ji Y, Shi Y, Wang L, Lu J, Ferronato C, Chovelon JM. Sulfate radical-based oxidation of antibiotics sulfamethazine, sulfapyridine, sulfadiazine, sulfadimethoxine, and sulfachloropyridazine: formation of SO2 extrusion products and effects of natural organic matter. Sci Total Environ. 2017;593- 594:704-12.

  36. Tang S, Yuan D, Rao Y, Li N, Qi J, Cheng T, Sun Z, Gu J, Huang H. Persulfate activation in gas phase surface discharge plasma for synergetic removal of antibiotic in water. Chem Eng J. 2018;337:446-54.

  37. Wang C, Liang C. Oxidative degradation of TMAH solution with UV persulfate activation. Chem Eng J. 2014;254:472-8.

  38. Liang C, Su H. Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind Eng Chem Res. 2009;48:5558-62.

  39. Izadifard M, Achari G, Langford CH. Degradation of sulfolane using activated persulfate with UV and UV-ozone. Water Res.2017;125:325-31.

  40. Wu D, Li X, Zhang J, Chen W, Lu P, Tang Y, Li L. Efficient PFOA degradation by persulfate-assisted photocatalytic ozonation. Sep Purif Technol. 2018;207:255-61.

  41. Hu P, Long M. Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications. Appl Catal B. 2016;181:103-17.

  42. Olmez-Hanci T, Arslan-Alaton I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chem Eng J. 2013;224:10-16.

  43. Guo H, Gao N, Yang Y, Zhang Y. Kinetics and transformation pathways on oxidation of fluoroquinolones with thermally activated persulfate. Chem Eng J. 2016;292:82-91.

  44. Wang G, Zhao D, Kou F, Ouyang Q, Chen J, Fang Z. Removal of norfloxacin by surface Fenton system (MnFe2O4/H2O2): kinetics, mechanism and degradation pathway. Chem Eng J. 2018;351:747-55.

  45. Cao D, Wang Y, Qiao M, Zhao X. Enhanced photoelectrocatalytic degradation of norfloxacin by an Ag3PO4/BiVO4 electrode with low bias. J Catal. 2018;360:24-9.

  46. Niu XZ, Busetti F, Langsa M, Croue JP. Roles of singlet oxygen and dissolved organic matter in self-sensitized photo-oxidation of antibiotic norfloxacin under sunlight irradiation. Water Res. 2016;106:214-22.

  47. Guo H, Ke T, Gao N, Liu Y, Cheng X. Enhanced degradation of aqueous norfloxacin and enrofloxacin by UV-activated persulfate: kinetics, pathways and deactivation. Chem Eng J. 2017;316:471-80.

  48. Li H, Chen J, Hou H, Pan H, Ma X, Yang J, Wang L, Crittenden JC. Sustained molecular oxygen activation by solid iron doped silicon carbide under microwave irradiation: mechanism and application to norfloxacin degradation. Water Res. 2017;126:274-84.

  49. Ding D, Liu C, Ji Y, Yang Q, Chen L, Jiang C, Cai T. Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: identification of radicals and degradation pathway. Chem Eng J. 2017;308:330-9.


Articles with similar content:

Utilization of Reactive Oxygen Species Generated by Electric Discharge in Biomedical Engineering
Plasma Medicine, Vol.8, 2018, issue 2
J. Schmiedberger, Anna Vodickova
Understanding the Differences Between Antimicrobial and Cytotoxic Properties of Plasma Activated Liquids
Plasma Medicine, Vol.8, 2018, issue 3
Evanthia Tsoukou, Paula Bourke, Daniela Boehm
Comparison of Point-to-Plane and Point-to-Point Corona Discharge for the Decontamination or Sterilization of Surfaces and Liquids
Plasma Medicine, Vol.1, 2011, issue 1
B. Stepankova, Vladimir Scholtz, J. Julak
INTERACTION OF ARTIFICIAL DNA-LIKE STRUCTURES IN THE MICROWAVE RANGE: POLARIZATION SELECTIVITY OF WAVE REFLECTION
Telecommunications and Radio Engineering, Vol.70, 2011, issue 20
S. A. Khakhomov, I. V. Semchenko, A. P. Balmakov
Effects of the Effluent of a Microscale Atmospheric Pressure Plasma-jet Operated with He/O2 Gas on Bovine Serum Albumin
Plasma Medicine, Vol.3, 2013, issue 1-2
Jan Benedikt, Julia E. Bandow, Eugen Edengeiser, Martina Havenith, Simon Schneider, Jan-Wilm Lackmann