Suscripción a Biblioteca: Guest
Plasma Medicine

Publicado 4 números por año

ISSN Imprimir: 1947-5764

ISSN En Línea: 1947-5772

SJR: 0.216 SNIP: 0.263 CiteScore™:: 1.4 H-Index: 24

Indexed in

Cold Plasma Sterilization of Open Wounds: Live Rat Model

Volumen 1, Edición 2, 2011, pp. 109-114
DOI: 10.1615/PlasmaMed.2011002698
Get accessDownload

SINOPSIS

Atmospheric pressure non-equilibrium (cold) plasmas are already known to be effective sterilization agents. This work further confirms the ability of cold plasma to inactivate pathogenic organisms in a live animal model. The rat wound model used here represents a surgical treatment situation whereby the wound is open and the bleeding is controlled. High concentration of Staphylococcus aureus is placed onto the wound area and allowed to incubate for four hours prior to cold plasma treatment. We show a 3-log reduction in pathogen load on the wound following a one minute treatment.

CITADO POR
  1. von Woedtke Th., Metelmann H.-R., Weltmann K.-D., Clinical Plasma Medicine: State and Perspectives ofin VivoApplication of Cold Atmospheric Plasma, Contributions to Plasma Physics, 54, 2, 2014. Crossref

  2. Matsui Kei, Ikenaga Noriaki, Sakudo Noriyuki, Effects of additional vapors on sterilization of microorganism spores with plasma-excited neutral gas, Japanese Journal of Applied Physics, 54, 1S, 2015. Crossref

  3. Patil S., Moiseev T., Misra N.N., Cullen P.J., Mosnier J.P., Keener K.M., Bourke P., Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package, Journal of Hospital Infection, 88, 3, 2014. Crossref

  4. Lu H., Patil S., Keener K.M., Cullen P.J., Bourke P., Bacterial inactivation by high-voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA, Journal of Applied Microbiology, 116, 4, 2014. Crossref

  5. Fuh Che A., Clark Shane M., Wu Wei, Wang Chuji, Electronic ground state OH(X) radical in a low-temperature atmospheric pressure plasma jet, Journal of Applied Physics, 120, 16, 2016. Crossref

  6. Shahbazi Rad Zahra, Abbasi Davani Fereydoun, Non-thermal atmospheric pressure dielectric barrier discharge plasma source construction and investigation on the effect of grid on wound healing application, Clinical Plasma Medicine, 4, 2, 2016. Crossref

  7. Bazaka Kateryna, Grant Daniel S., Alancherry Surjith, Jacob Mohan V., Plasma-Assisted Fabrication and Processing of Biomaterials, in Biomedical Applications of Polymeric Materials and Composites, 2016. Crossref

  8. Svarnas P, Asimakoulas L, Katsafadou M, Pachis K, Kostazos N, Antimisiaris S G, Liposomal membrane disruption by means of miniaturized dielectric-barrier discharge in air: liposome characterization, Journal of Physics D: Applied Physics, 50, 34, 2017. Crossref

  9. McClurkin-Moore Janie D., Ileleji Klein E., Keener Kevin M., The Effect of High-Voltage Atmospheric Cold Plasma Treatment on the Shelf-Life of Distillers Wet Grains, Food and Bioprocess Technology, 10, 8, 2017. Crossref

  10. Microorganisms: Destruction with Nonthermal Plasma, in Encyclopedia of Plasma Technology, 2016. Crossref

  11. Lazukin A V, Serdukov Y A, Pinchuk M E, Stepanova O M, Krivov S A, Grabelnykh O I, Frequency-dependent transition from homogeneous to constricted shape in surface dielectric barrier discharge and its impact on biological target, Journal of Physics: Conference Series, 946, 2018. Crossref

  12. Cheng Kuang-Yao, Lin Zhi-Hua, Cheng Yu-Pin, Chiu Hsien-Yi, Yeh Nai-Lun, Wu Tung-Kung, Wu Jong-Shinn, Wound Healing in Streptozotocin-Induced Diabetic Rats Using Atmospheric-Pressure Argon Plasma Jet, Scientific Reports, 8, 1, 2018. Crossref

  13. Olatunde Oladipupo Odunayo, Benjakul Soottawat, Vongkamjan Kitiya, Dielectric barrier discharge cold atmospheric plasma: Bacterial inactivation mechanism, Journal of Food Safety, 39, 6, 2019. Crossref

  14. Korzec Dariusz, Hoppenthaler Florian, Nettesheim Stefan, Piezoelectric Direct Discharge: Devices and Applications, Plasma, 4, 1, 2020. Crossref

  15. Han L., Patil S., Boehm D., Milosavljević V., Cullen P. J., Bourke P., Dudley E. G., Mechanisms of Inactivation by High-Voltage Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus, Applied and Environmental Microbiology, 82, 2, 2016. Crossref

  16. von Woedtke Th., Reuter S., Masur K., Weltmann K.-D., Plasmas for medicine, Physics Reports, 530, 4, 2013. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain