Suscripción a Biblioteca: Guest
Multiphase Science and Technology

Publicado 4 números por año

ISSN Imprimir: 0276-1459

ISSN En Línea: 1943-6181

SJR: 0.144 SNIP: 0.256 CiteScore™:: 1.1 H-Index: 24

Indexed in

OSCILLATING MENISCUS AND SLUGS IN A SQUARE CAPILLARY: A HYDRODYNAMIC STUDY

Volumen 24, Edición 1, 2012, pp. 67-87
DOI: 10.1615/MultScienTechn.v24.i1.30
Get accessGet access

SINOPSIS

Improvements in fabrication capability have given rise to mini/micro systems for heat and mass transfer operations. These systems may involve single- as well as multiple-phase flow. Understanding the local hydrodynamics of uniform/oscillating menisci or air plug/liquid slug/Taylor bubble flow inside such systems (i.e., capillaries/channels) will help us in manipulating the performance parameters, which will further improve the efficiency of multiphase microsystems. The present work aims not only to study the interfacial contact line behavior of an oscillating single meniscus and liquid slug formed between different fluids, but also various hydrodynamic properties. An eccentric cam follower system has been fabricated to provide sinusoidal oscillations of the fluid in a square glass capillary having hydraulic diameter of 2.0 mm. Experiments are done with two different fluids, namely, deionized water and silicone oil. A high-speed CCD camera is used to take images of the oscillating meniscus. Contact angle measurements are carried out for water along the length of the capillary at different oscillating frequencies, ranging from 0.25 Hz to 0.75 Hz. Besides dynamic contact angle information, curvature values of the oscillating Taylor front, film thickness, and pinning effect were observed for these fluids.

REFERENCIAS
  1. Ajaev, V. S. and Homsy, G. M., Modeling Shapes and Dynamics of Confined Bubbles. DOI: 10.1146/annurev.fluid.38.050304.092033

  2. Angeli, P. and Gavriilidis, A., Hydrodynamics of Taylor flow in Small Channels: A Review. DOI: 10.1243/09544062JMES776

  3. Blake, T. D. and Clarke, A., Contact Angle Relaxation during Droplet Spreading: Comparison between Molecular Kinetic Theory and Molecular Dynamics. DOI: 10.1021/la962004g

  4. Blake, T. D., The Physics of Moving Wetting Lines. DOI: 10.1016/j.jcis.2006.03.051

  5. Bretherton, F. P., The Motion of Long Bubbles in Tubes. DOI: 10.1017/S0022112061000160

  6. Buffone, C., Sefiane, K., and Easson, W., Marangoni-Driven Instabilities of an Evaporating Liquid-Vapor Interface. DOI: 10.1103/PhysRevE.71.056302

  7. Cubaud, T. and Ho, C. H., Transport of Bubbles in Square Microchannels. DOI: 10.1063/1.1813871

  8. De Gennes, P. G., Hua, X., and Levinson, P., Dynamics of Wetting: Local Contact Angles.

  9. Fairbrother, F. and Stubbs, A. E., The bubble-tube method of measurement. DOI: 10.1039/JR9350000527

  10. Golestanian, R. and Raphaël, E., Relaxation of a Moving Contact Line and the Landau-Levich Effect. DOI: 10.1209/epl/i2001-00607-5

  11. Hansen, R. J. and Toong, T. Y., Dynamic Contact Angle and Its Relationship to Forces of Hydrodynamic Origin. DOI: 10.1016/0021-9797(71)90280-3

  12. Kandlikar, S. G., Fundamental Issues Related to Flow Boiling in Mini-Channels and Microchannels. DOI: 10.1016/S0894-1777(02)00150-4

  13. Kew, P. A. and Cornwell, K., Correlations for the Prediction of Boiling Heat Transfer in Small-Diameter Channels. DOI: 10.1016/S1359-4311(96)00071-3

  14. Kolb, W. B. and Cerro, R. L., The Motion of Long Bubbles in Tubes of Square Cross Section. DOI: 10.1063/1.858832

  15. Legait, B., Laminar Flow of Two Phases through a Capillary Tube with Variable Square Cross Section. DOI: 10.1016/0021-9797(83)90005-X

  16. Lips, S. and Bonjour, J., Oscillating Two-Phase Flow in a Capillary Tube: Experiments and Modeling.

  17. Pitt, W. G., Young, B. R., and Cooper, S. L., Measurement of Advancing and Receding Contact Angle Inside Polymer Tubings. DOI: 10.1016/0166-6622(87)80156-7

  18. Qiu, H. and Wang, X., Experimental Study on Interfacial Film Dynamics of Oscillating Multiphase Micro Flows.

  19. Serizawa, A., Feng, Z., and Kawara, Z., Two-phase flow in microchannels. DOI: 10.1016/S0894-1777(02)00175-9

  20. Sedev, R. V., Budziak, C. J., Petrov, J. G., and Neumann, A. W., Dynamic Contact Angles at Low Velocities. DOI: 10.1006/jcis.1993.1338

  21. Shekhawat, Y. S., Khandekar, S., and Panigrahi, P. K., Hydrodynamic Study of an Oscillating Meniscus in a Square Mini-Channel. DOI: 10.1115/MNHMT2009-18322

  22. Tripathi, A., Khandekar, S., and Panigrahi, P. K., Oscillatory Contact Line Motion inside Capillaries.

  23. Triplett, K. A., Ghiaasiaan, S. M., Abdel-Khalik, S. I., and Sadowski, D. L., Gas–Liquid Two-Phase Flow in Micro-Channels, Part 1: Two Phase Flow Patterns. DOI: 10.1016/S0301-9322(98)00054-8

  24. Triplett, K. A., Ghiaasiaan, S. M., Abdel-Khalik, S. I., LeMouel, A., and McCord, B. N., Gas–Liquid Two-Phase Flow in Microchannels. Part II: Void Fraction and Pressure Drop. DOI: 10.1016/S0301-9322(98)00055-X

  25. Van Der Zanden, A. J. J. and Chesters, A. K., An Experimental Study of the Meniscus Shape Associated with Moving Liquid-Fluid Contact Lines. DOI: 10.1016/0301-9322(94)90045-0

  26. Wong, H., Morris, S., and Radke, C., Three-Dimensional Menisci in Polygonal Capillaries. DOI: 10.1016/0021-9797(92)90171-H

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain