Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Multiphase Science and Technology
SJR: 0.183 SNIP: 0.483 CiteScore™: 0.5

ISSN Imprimir: 0276-1459
ISSN En Línea: 1943-6181

Multiphase Science and Technology

DOI: 10.1615/MultScienTechn.2018023739
pages 165-186

ANALYSIS OF MASS TRANSFER IN HOLLOW-FIBER MEMBRANE SEPARATOR VIA NONLINEAR EIGENFUNCTION EXPANSIONS

Péricles C. Pontes
Laboratory of Nano- and Microfluidics and Microsystems, LabMEMS, Mechanical Engineering Department and Nanotechnology Engineering Dept., POLI & COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Cx. Postal 68503, Rio de Janeiro, RJ, CEP 21945-970, Brazil; Araguaia Institute of Engineering, Federal University of South and Southeast of Pará-UNIFESSPA, Santana do Araguaia, PA, Brazil
Anderson P. Almeida
Laboratory of Nano- and Microfluidics and Microsystems, LabMEMS, Mechanical Engineering Department and Nanotechnology Engineering Dept., POLI & COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Cx. Postal 68503, Rio de Janeiro, RJ, CEP 21945-970, Brazil
Renato M. Cotta
Laboratory of Nano- and Microfluidics and Microsystems, LabMEMS, Mechanical Engineering Department and Nanotechnology Engineering Dept., POLI & COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Cx. Postal 68503, Rio de Janeiro, RJ, CEP 21945-970, Brazil; Interdisciplinary Nucleus for Social Development—NIDES/CT, UFRJ, Brazil; Mechanical Engineering Department, University College London, UCL, United Kingdom
Carolina Palma Naveira-Cotta
Laboratory of Nano- and Microfluidics and Microsystems, LabMEMS, Mechanical Engineering Department and Nanotechnology Engineering Dept., POLI & COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Cx. Postal 68503, Rio de Janeiro, RJ, CEP 21945-970, Brazil; Mechanical Engineering Department, University College London, UCL, United Kingdom

SINOPSIS

The Generalized Integral Transform Technique (GITT) is a well-established hybrid numerical-analytical method applicable to the solution of linear or non-linear convection-diffusion problems, which presents relatively low computational cost and automatic error control. Here, this hybrid method is employed in the analysis of mass transfer in hollow-fiber mass separators. The adopted model considers fully developed laminar flow of a Newtonian fluid with diffusion and reaction transport effects of the solute through the membrane pores. The diffusive-reactive process at the membrane is represented through a nonlinear boundary condition. A hybrid numerical-analytical solution is obtained, based on retaining the original nonlinear boundary condition coefficients in the eigenvalue problem proposition. The developed nonlinear eigenfunction expansion is then thoroughly analyzed in terms of convergence behaviour. The novel approach is also critically compared against previously reported numerical results for typical parametric values and with an alternative convergence enhancement approach based on the proposition of a nonlinear filter, that makes the boundary condition homogeneous and allows for an integral transform solution through the proposition of a linear eigenvalue problem.


Articles with similar content:

NONLINEAR EIGENVALUE PROBLEM APPROACH IN THE INTEGRAL TRANSFORMS ANALYSIS OF METAL SEPARATION BY POLYMERIC DIFFUSIVE MEMBRANES
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2017, issue
Anderson P. Almeida, Péricles C. Pontes, Carolina Palma Naveira-Cotta, Renato M. Cotta
NONLINEAR EIGENVALUE PROBLEM APPROACH IN THE INTEGRAL TRANSFORMS ANALYSIS OF METAL SEPARATION BY POLYMERIC DIFFUSIVE MEMBRANES
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2017, issue
Anderson P. Almeida, Péricles C. Pontes, Carolina Palma Naveira-Cotta, Renato M. Cotta
INTEGRAL TRANSFORMS FOR CONVECTION-DIFFUSION IN MULTISCALE COMPLEX DOMAINS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Diego C. Knupp, Carolina Palma Naveira-Cotta, Renato M. Cotta
THE UNIFIED INTEGRAL TRANSFORMS (UNIT) ALGORITHM WITH TOTAL AND PARTIAL TRANSFORMATION
Computational Thermal Sciences: An International Journal, Vol.6, 2014, issue 6
Joao N. N. Quaresma, Diego C. Knupp, Leandro A. Sphaier, Carolina Palma Naveira-Cotta, Renato M. Cotta
INTEGRAL TRANSFORM COMPUTATION OF COMPRESSIBLE BOUNDARY LAYERS
Hybrid Methods in Engineering, Vol.1, 1999, issue 2
Humberto Araujo Machado, Renato M. Cotta