Suscripción a Biblioteca: Guest
International Journal for Multiscale Computational Engineering

Publicado 6 números por año

ISSN Imprimir: 1543-1649

ISSN En Línea: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Simulation of Quantum Dot-Based Nanodevices for Photovoltaic Applications with Multiscale Models

Volumen 7, Edición 1, 2009, pp. 1-7
DOI: 10.1615/IntJMultCompEng.v7.i1.20
Get accessGet access

SINOPSIS

Future space exploration missions and space electronic equipment require improvements in solar cell efficiency and radiation hardness. Nanoengineered materials and quantum dot (QD)- based photovoltaic devices promise to deliver more efficient, lightweight solar cells and arrays, which will be of high value for space missions. The multiscale approach to the development of Technology Computer Aided Design simulation software tools for QD-based semiconductor devices is presented. It is based on the classical hydrodynamic and quantum-mechanical models for the QD solar cells.

REFERENCIAS
  1. Balandin, A. A. and Lazarenkova, O. L., Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices. DOI: 10.1063/1.1539905

  2. CFD Research Corporation, <a href="http://www.cfdrc.com/bizareas /microelec/micro nano/">NanoTCAD Web site</a>.

  3. Fedoseyev, A. I., Turowski, M., and Wartak, M. S., Kinetic and quantum models for nanoelectronic and optoelectronic device simulation. DOI: 10.1166/jno.2007.303

  4. Shao, Q., Balandin, A. A., Fedoseyev, A. I., and Turowski, M., Intermediate-band solar cells based on quantum dot supracrystals. DOI: 10.1063/1.2799172

  5. Fedoseyev, A. I., Kolobov, V., Arslanbekov, R., and Przekwas, A., Kinetic simulation tools for nano-scale semiconductor devices. DOI: 10.1016/S0167-9317(03)00349-6

  6. Seto, M., Leduc, J.-V., and Lammers, A. M. F., Al-n-Si double Schottky photodiodes for optical storage systems. DOI: 10.1109/ESSDERC.1997.194501

  7. Fedoseyev, A. I. and Bessonov, O. A., Iterative solution for large linear systems for unstructured meshes with preconditioning by high order incomplete decomposition.

  8. Wesseling, P. and Sonneveld, P., Numerical experiments with a multiple grid and a preconditioned Lanczos type method. DOI: 10.1007/BFb0086930

  9. Saad, Y., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. DOI: 10.1137/0907058

  10. Kershaw, D. S., The incomplete Choleskyconjugate gradient method for the iterative solution of systems of linear equations. DOI: 10.1016/0021-9991(78)90098-0

  11. Schenk, O., Rollin, S., and Hagemann, M., Recent advances in sparse linear solver technology for semiconductor device simulation matrices. DOI: 10.1109/SISPAD.2003.1233648

  12. Fedoseyev, A. I., Turowski, M., Raman, A., Alles, M. L., and Weller, R. A., Multiscale numerical models for simulation of radiation events in semiconductor devices. DOI: 10.1007/978-3-540-69387-1_31

  13. Lazarenkova, O. L. and Balandin, A. A., Electron and photon energy spectra in a threedimensional regimented quantum dot superlattice.

  14. Balandin, A. A. and Lazarenkova, O. L., Miniband formation in a quantum dot crystal. DOI: 10.1063/1.1366662

  15. Landau, L. D., Lifshitz, E. M., and Pitaevskii, L. P, Statistical physics.

  16. Nika, D. L., Pokatilov, E. P., Shao, Q., and Balandin, A. A., Charge carrier states and light absorption in the ordered quantum dot superlattices. DOI: 10.1103/PhysRevB.76.125417

  17. Fonoberov, V. A., Pokatilov, E. P., and Balandin, A. A., Exciton states and optical transitions in colloidal CdS quantum dots: Shape and dielectric mismatch effects. DOI: 10.1103/PhysRevB.66.085310

  18. Fonoberov, V. A. and Balandin, A. A., Excitonic properties of strained wurtzite and zincblende GaN/AlN quantum dots. DOI: 10.1063/1.1623330

CITADO POR
  1. Shrestha Santosh, Photovoltaics literature survey (No. 77), Progress in Photovoltaics: Research and Applications, 18, 3, 2010. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain