Suscripción a Biblioteca: Guest
International Journal for Multiscale Computational Engineering

Publicado 6 números por año

ISSN Imprimir: 1543-1649

ISSN En Línea: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Construction of the Fiber-Matrix Interfacial Failure Envelope in a Polymer Matrix Composite

Volumen 2, Edición 1, 2004, 13 pages
DOI: 10.1615/IntJMultCompEng.v2.i1.70
Get accessGet access

SINOPSIS

Previous research efforts have used the single-fiber cruciform test to measure the tensile normal strength of a fiber/matrix interface while eliminating the influence of free-edge stresses that are present in transverse testing of conventional straight-sided specimens. In this work, the cruciform specimen was modified to characterize the fiber/matrix interface strength under combined transverse and shear loading. Initiation and growth of interface debonds were detected optically by observation of variations in the intensity of light reflected from the surface of the fiber during loading. Test data reduction was accomplished with a 3-D finite element model of the angled cruciform sample. Using the measured value of applied stress at debond initiation, and the calculated stress concentration factors at the fiber/matrix interface, a mixed-mode failure envelope was constructed in the normal-shear stress space, and a quadratic failure criteria was proposed. Finally, a brief discussion has been included of how this interfacial strength data may be used in ysis to predict bulk characteristics of a composite laminate.

CITADO POR
  1. Foster D. C., Tandon G. P., Zoghi M., Evaluation of Failure Behavior of Transversely Loaded Unidirectional Model Composites, Experimental Mechanics, 46, 2, 2006. Crossref

  2. Jata Kumar V., Roy Ajit, Parthasarathy Triplicane A., Failure Modes of Aerospace Materials, in Encyclopedia of Structural Health Monitoring, 2008. Crossref

  3. Buryachenko V.A., Schoeppner G.A., Effective elastic and failure properties of fiber aligned composites, International Journal of Solids and Structures, 41, 16-17, 2004. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain