Suscripción a Biblioteca: Guest
International Journal for Multiscale Computational Engineering

Publicado 6 números por año

ISSN Imprimir: 1543-1649

ISSN En Línea: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Effects of Sample Geometry on the Uniaxial Tensile Stress State at the Nanoscale

Volumen 7, Edición 3, 2009, pp. 187-194
DOI: 10.1615/IntJMultCompEng.v7.i3.20
Get accessGet access

SINOPSIS

Uniaxial compression of micro- and nanopillars is frequently used to elicit plastic size effects in single crystals. Uniaxial tensile experiments on nanoscale materials have the potential to enhance the understanding of the experimentally widely observed strength increase. Further- more, these experiments allow for investigations into the in-strength and to help to study tension-compression asymmetry. The sample geometry might influence mechanical proper- ties, and to investigate this dependence, we demonstrate two methods of uniaxial nanotensile sample fabrication. We compare the experimentally obtained tensile stress-strain response for cylindrical and square nanopillars and provide finite element method simulation results and discuss the initiation of plastic yielding in these nanosamples.

REFERENCIAS
  1. Uchic, M. D., Dimiduk, D. M., Florando, J. N., and Nix, W. D., Sample dimensions influence strength and crystal plasticity. DOI: 10.1126/science.1098993

  2. Greer, J. R., Oliver, W. C., and Nix, W. D., Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. DOI: 10.1016/j.actamat.2004.12.031

  3. Greer, J. R., and Nix, W. D., Nanoscale gold pillars strengthened through dislocation starvation. DOI: 10.1103/PhysRevB.73.245410

  4. Volkert, C. A., and Lilleodden, E. T., Size effects in the deformation of submicron au columns. DOI: 10.1080/14786430600567739

  5. Kiener, D., Motz, C., Schöberl, T., Jenko, M., and Dehm, G., Determination of Mechanical properties of copper at the micron scale. DOI: 10.1002/adem.200600129

  6. Brinckmann, S., Kim, J. Y., and Greer, J. R., Fundamental differences in mechanical behavior between two types of crystals at nano-scale. DOI: 10.1103/PhysRevLett.100.155502

  7. Kim, Y. J., and Greer, J. R., Size-dependent mechanical properties of molybdenum nanopillars. DOI: 10.1063/1.2979684

  8. Ng, K. S., and Ngan, A. H.W., Stochastic nature of plasticity of aluminum micro-pillars. DOI: 10.1016/j.actamat.2007.12.016

  9. Rao, S. I., Dimiduk, D. M., Parthasarathy, T. A., Uchic, M. D., Tang, M., and Woodward, C., Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations. DOI: 10.1016/j.actamat.2008.03.011

  10. Weygand, D., Poignant, M., Gumbsch, P., and Kraft, O., Three-dimensional dislocation dynamics simulation of the influence of sample size on the stress-strain behavior of fcc single-crystalline pillars. DOI: 10.1016/j.msea.2006.09.183

  11. Zhu, T., Li, J., Samanta, A., Leach, A., and Gall, K., Temperature and strain rate dependence of surface dislocation nucleation. DOI: 10.1103/PhysRevLett.100.025502

  12. Brenner, S. S., Tensile strength of whiskers. DOI: 10.1063/1.1722294

  13. Kiener, D., Grosinger, W., Dehm, G., and Pippan, R., A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized singlecrystal copper samples. DOI: 10.1016/j.actamat.2007.10.015

  14. Li, J., The mechanics and physics of defect nucleation. DOI: 10.1557/mrs2007.48

  15. Nicola, L., Van der Giessen, E., and Needleman, A., Size effects in polycrystalline thin films analyzed by discrete dislocation plasticity. DOI: 10.1016/j.tsf.2004.12.012

  16. Weinberger, C. R., and Cai, W., Computing image stress in an elastic cylinder. DOI: 10.1016/j.jmps.2007.03.007

  17. Balint, D. S., Deshpande, V. S., Needleman, A., and Van der Giessen, E., Size effects in uniaxial deformation of single and polycrystals: a discrete dislocation plasticity analysis. DOI: 10.1088/0965-0393/14/3/005

  18. Tang, H., Schwarz, K. W., and Espinosa, H. D., Dislocation escape-related size effects in singlecrystal micropillars under uniaxial compression. DOI: 10.1016/j.actamat.2006.10.021

  19. Rao, S. I., Dimiduk, D. M., Tang, M., and Parthasarathy, T. A., Estimating the strength of single-ended dislocation sources in micronsized single crystals. DOI: 10.1080/14786430701591513

  20. Guruprasad, P. J., and Benzerga, A. A., Size effects under homogeneous deformation of single crystals: A discrete dislocation analysis. DOI: 10.1016/j.jmps.2007.03.009

  21. Kiener, D., Grosinger, W., and Dehm, G., On the importance of sample compliance in uniaxial microtesting. DOI: 10.1016/j.scriptamat.2008.09.024

  22. Csikor, F. F., Motz, C., Weygand, D., Zaiser, M., and Zapperi, S., Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. DOI: 10.1126/science.1143719

  23. Dimiduk, D. M., Woodward, C., LeSar, R., and Uchic, M. D., Scale-free intermittent flow in crystal plasticity. DOI: 10.1126/science.1123889

CITADO POR
  1. Pfetzing-Micklich J., Brinckmann S., Dey S.R., Otto F., Hartmaier A., Eggeler G., Micro-shear deformation of pure copper, Materialwissenschaft und Werkstofftechnik, 42, 3, 2011. Crossref

  2. Kim Ju-Young, Greer Julia R., Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale, Acta Materialia, 57, 17, 2009. Crossref

  3. Brinckmann Steffen, Siegmund Thomas, Free-surface enhanced continuum model predicts size-effect for pillar compression at micro- and nano-scale, International Journal of Materials Research, 103, 3, 2012. Crossref

  4. Heyer J.-K., Brinckmann S., Pfetzing-Micklich J., Eggeler G., Microshear deformation of gold single crystals, Acta Materialia, 62, 2014. Crossref

  5. Xu Shuozhi, Startt Jacob K., Payne Thomas G., Deo Chaitanya S., McDowell David L., Size-dependent plastic deformation of twinned nanopillars in body-centered cubic tungsten, Journal of Applied Physics, 121, 17, 2017. Crossref

  6. Wieczorek N., Laplanche G., Heyer J.-K., Parsa A.B., Pfetzing-Micklich J., Eggeler G., Assessment of strain hardening in copper single crystals using in situ SEM microshear experiments, Acta Materialia, 113, 2016. Crossref

  7. Jaya B. Nagamani, Mathews Nidhin G., Mishra Ashwini K., Basu Soudip, Jacob Kevin, Non-conventional Small-Scale Mechanical Testing of Materials, Journal of the Indian Institute of Science, 102, 1, 2022. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain