Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Multiscale Computational Engineering
Factor de Impacto: 1.016 Factor de Impacto de 5 años: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN En Línea: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2015014164
pages 463-474

EXACT SOLUTION FOR FREE VIBRATION ANALYSIS OF FUNCTIONALLY GRADED MICROPLATES BASED ON THE STRAIN GRADIENT THEORY

H. Farahmand
Department of Mechanical Engineering, Islamic Azad University of Kerman Branch, Kerman, Iran
M. Mohammadi
Young Researchers and Elites Club, Kerman Branch, Islamic Azad University, Kerman, Iran
A. Iranmanesh
Department of Civil Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
S. S. Naseralavi
Department of Civil Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

SINOPSIS

This paper deals with free vibration analysis of thin functionally graded rectangular microplates. Along with classical plate theory, strain gradient theory is implemented to capture microstructure effects. Using the variational approach and the principle of minimum total potential energy, the governing equations for rectangular microplates are developed. In accordance with the functionally graded distribution of material properties through the thickness, higherorder governing equations are coupled in terms of displacement fields. Applying a new and novel methodology, these equations are decoupled, with the special benefit of being solved analytically. Using the variational approach all simply supported, clamped and free boundary conditions are determined. Consequently, on the basis of the Navier solution, free vibrational analysis of simply supported rectangular microplates is carried out. Finally the effects of material properties, microstructure parameters and dimensions on the nondimensional natural frequencies of microplates are explored. Also, it is shown that length scale parameters affect both governing equations and boundary conditions.


Articles with similar content:

NAVIER SOLUTION FOR STATIC ANALYSIS OF FUNCTIONALLY GRADED RECTANGULAR MICROPLATES
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 4
H. Farahmand , M. Mohammadi
BENDING OF A THIN RECTANGULAR ISOTROPIC PLATE: A COSSERAT ELASTICITY ANALYSIS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.8, 2017, issue 4
Soumen Shaw
A NEW MULTISCALE FINITE ELEMENT METHOD FOR MECHANICAL ANALYSIS OF PERIODIC HETEROGENEOUS COSSERAT MATERIALS
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 4
Hongwu Zhang, Zhaoqian Xie
STATIC DEFLECTION ANALYSIS OF FLEXURAL SIMPLY SUPPORTED SECTORIAL MICRO-PLATE USING P-VERSION FINITE-ELEMENT METHOD
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 2
H. Farahmand , S. Arabnejad, A. R. Ahmadi
EXACT BOUNDARY CONDITIONS FOR BUCKLING ANALYSIS OF RECTANGULAR MICRO-PLATES BASED ON THE MODIFIED STRAIN GRADIENT THEORY
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 3
Majid Fooladi, Hossein Darijani, Meisam Mohammadi