Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Multiscale Computational Engineering
Factor de Impacto: 1.016 Factor de Impacto de 5 años: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN En Línea: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2012002587
pages 281-293

AVERAGING PROPERTIES FOR PERIODIC HOMOGENIZATION AND LARGE DEFORMATION

Mohamed Ben Bettaieb
ArGEnCo Department, MS2F Division, University of Liege, Chemin des Chevreuils 1, 4000 Liege, Belgium
Olivier Debordes
LMA & ECM, IMT, Technopole Chateau-Gombert, F13383 Marseille Cedex 13, France
Abdelwaheb Dogui
LGM, ENIM, 5019 Monastir, Tunisia
Laurent Duchene
ArGEnCo Department, MS2F Division, University of Liege, Chemin des Chevreuils 1, 4000 Liege, Belgium

SINOPSIS

The main motivation of this paper consists of using the periodic homogenization theory to derive several relations between macroscopic Lagrangian (e.g., deformation gradient, Piola−Kirchhoff tensor) and Eulerian (e.g., velocity gradient, Cauchy stress) quantities. These relations demonstrate that these macroscopic quantities behave formally in the same way as their microscopic counterparts. We say therefore that these relations are stable with respect to the periodic homogenization. We also demonstrate the equivalence between the two forms of the macroscopic power density expressed in the Lagrangian and Eulerian formulations. Two simple examples illustrate these results, and indicate also that the Green−Lagrange strain tensor and the second Piola−Kirchhoff stress tensor are not stable with respect to periodic homogenization.

REFERENCIAS

  1. Andia, P. C., Costanzo, F., and Gray, G. L., A Lagrangian-based continuum homogenization approach approach applicable to molecular dynamics simulations. DOI: 10.1016/j.ijsolstr.2005.05.027

  2. Ben Bettaieb, M., Modélisation numérique du comportement de matériaux polycristallins par homogénéisation périodique.

  3. Colby, C. and HyungJoo, K., Multi-scale unit cell analyses of textile composites.

  4. Débordes, O. and Dogui, A., Numerical homogenization of polycrystalline media.

  5. Duvaut, G., Méthodes variationnelles, initiation et applications.

  6. Elbououni, S., Simulation numérique d'anisotropie induite dans les matériaux polycristallins selon une approche micro-macro.

  7. Feyel, F. and Chaboche, J.-L., FE2 multiscale approach for modeling the elastoviscoplastic behavior of long fiber SiC/Ti composite materials. DOI: 10.1016/S0045-7825(99)00224-8

  8. Fish, J. and Fan, R., Mathematical homogenization of nonperiodic heterogeneous media subjected to large deformation transient loading. DOI: 10.1002/nme.2355

  9. Fish, J. and Kuznetsov, S., Computational continua. DOI: 10.1002/nme.2918

  10. Gurtin, M. E., An Introduction to Continuum Mechanics.

  11. Hill, R., Elastic properties of reinforced solids: Some theoretical principles. DOI: 10.1016/0022-5096(63)90036-X

  12. Matsui, K., Terada, K., and Yuge, K., Two-scale finite element analysis of heterogeneous solids with periodic microstructures. DOI: 10.1016/j.compstruc.2004.01.004

  13. Miehe, C. and Dettmar, J., A framework for micro–macro transitions in periodic particle aggregates of granular materials. DOI: 10.1016/j.cma.2003.10.004

  14. Miehe, C., Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. DOI: 10.1016/S0045-7825(02)00564-9

  15. Nemat-Nasser, S., Averaging theorems in finite deformation plasticity. DOI: 10.1016/S0167-6636(98)00073-8

  16. Phillips, R., Crystals, Defects and Microstructures.

  17. Raviart, P. A. and Thomas, J. M., Introduction à l'analyse numérique des équations aux dérivées partielles.

  18. Suquet, P., Sur les équations de la plasticité: Existence et régularité des solutions.

  19. Taliercio, A. and Sagramoso, P., Uniaxial strength of polymeric-matrix fibrous composites predicted through a homogenization approach. DOI: 10.1016/0020-7683(94)00139-N


Articles with similar content:

FINITE STRAINS: OBJECTIVE RATES, CONJUGATE STRESS TENSORS, CONSTITUTIVE EQUATIONS FOR COMPOSITE MATERIALS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.1, 2010, issue 2
Alexander I. Golovanov
GRADIENT-DEPENDENT CONSTITUTIVE LAWS FOR A MODEL OF MICROCRACKED BODIES
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 6
Les Sudak, Salvatore Federico, Malika Bongue Boma
PROCEDURES TO BUILD PLATE MICROMECHANICAL MODELS FOR COMPOSITES LIKE PERIODIC BRICKWORKS: A CRITICAL REVIEW
Composites: Mechanics, Computations, Applications: An International Journal, Vol.1, 2010, issue 4
Antonella Cecchi
Coarse Implicit Time Integration of a Cellular Scale Particle Model for Plant Tissue Deformation
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 4
P. Ghysels, P. Van Liedekerke, H. Ramon, E. Tijskens, D. Roose, G. Samaey
A NEW DYNAMIC GGDH SUBGRID-SCALE HEAT FLUX MODEL FOR LARGE-EDDY SIMULATION OF TURBULENT THERMAL FLOWS
TSFP DIGITAL LIBRARY ONLINE, Vol.5, 2007, issue
Donald J. Bergstrom, Jing Yin, Bing-Chen Wang, Eugene Yee