Suscripción a Biblioteca: Guest
International Journal for Multiscale Computational Engineering

Publicado 6 números por año

ISSN Imprimir: 1543-1649

ISSN En Línea: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Generalized Micro/Macro Model of Crystallization and Its Numerical Realization

Volumen 8, Edición 3, 2010, pp. 259-266
DOI: 10.1615/IntJMultCompEng.v8.i3.30
Get accessGet access

SINOPSIS

In this paper considerations concerning the mathematical micro/macro model of pure metals solidification are presented. A generalized approach close to the Mehl-Johnson-Avrami-Kolmogoroff theory is applied. The differential equation leading to the well-known linear and exponential models of crystallization is generalized by the introduction of an additional parameter n. In this way the power-type model is obtained (the linear and exponential models correspond to n = 0 and n = 1). On a stage of numerical simulation the course of nucleation and nuclei growth are simulated using the procedure based on the registration of successive grain family growth. Obtained in this way, the local capacities of internal heat sources are taken into account on a stage of solution corresponding to macroscale. A macro heat transfer is described by the Fourier-type equation. Finally, examples of numerical simulations and the results concerning the influence of model parameters on a course of solidification are shown.

CITADO POR
  1. Mochnacki B., Szopa R., Sensitivity Analysis of Micro Models for Solidification of Pure Metals, in Computational Modeling, Optimization and Manufacturing Simulation of Advanced Engineering Materials, 49, 2016. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain