Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Multiscale Computational Engineering
Factor de Impacto: 1.016 Factor de Impacto de 5 años: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Imprimir: 1543-1649
ISSN En Línea: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2011002388
pages 51-64

STRESS-BASED ATOMISTIC/CONTINUUM COUPLING: A NEW VARIANT OF THE QUASICONTINUUM APPROXIMATION

C. Makridakis
Department of Applied Mathematics, University of Crete, 71409 Heraklion-Crete, Institute of Applied and Computational Mathematics, FORTH, 71110 Heraklion-Crete
Christoph Ortner
University of Oxford
E. Suli
Mathematical Institute, 24-29 S. Giles', Oxford OX1 3LB, United Kingdom

SINOPSIS

The force-based quasicontinuum (QCF) approximation isthe principle that lies behind the most commonly usedatomistic/continuum hybrid models for crystalline solids. Recentanalyses have shown some potential pitfalls of the QCF method, particularly the lack of positive definiteness of the linearized QCF operator and the lack of uniform stability as the number ofatoms tends to infinity. We derive a weak variational representation of the QCF operator and identify the origin ofthese difficulties as the lack of an interface condition on thestresses. This leads us to propose an improved variant of the QCF method that can be understood as a coupling mechanism based onstresses rather than forces.

REFERENCIAS

  1. Blanc, X., Le Bris, C., and Lions, P.-L., From molecular models to continuum mechanics. DOI: 10.1007/s00205-002-0218-5

  2. Dobson, M. and Luskin, M., Analysis of a force-based quasicontinuum approximation. DOI: 10.1051/m2an:2007058

  3. Dobson, M., Luskin, M., and Ortner, C., Stability, instability, and error of the force-based quasicontinuum approximation.

  4. Dobson, M., Luskin, M., and Ortner, C., Sharp stability estimates for the force-based quasicontinuum method.

  5. Dobson, M., Luskin, M., and Ortner, C., Iterative methods for the force-based quasicontinuum approximation.

  6. Dobson, M., Luskin, M., and Ortner, C., Accuracy of quasicontinuum approximations near instabilities.

  7. Dobson, M., Ortner, C., and Shapeev, A., The spectrum of the force-based quasicontinuum operator for a homogeneous periodic chain.

  8. E, W., Lu, J., and Yang, J. Z., Uniform accuracy of the quasicontinuum method. DOI: 10.1103/PhysRevB.74.214115

  9. E, W. and Ming, P., Cauchy-Born rule and the stability of crystalline solids: static problems. DOI: 10.1007/s00205-006-0031-7

  10. Fish, J., Nuggehally, M. A., Shephard, M. S., Picu, C. R., Badia, S., Parks, M. L., and Gunzburger, M., Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force. DOI: 10.1016/j.cma.2007.05.020

  11. Kohlhoff, S. and Schmauder, S., A new method for coupled elastic-atomistic modelling. DOI: 10.1007/978-1-4684-5703-2_42

  12. Makridakis, C., Ortner, C., and Süli, E., A priori error analysis of two force-based atomistic/continuum models of a periodic chain. DOI: 10.1007/s00211-011-0380-5

  13. Miller, R. E. and Tadmor, E. B., The quasicontinuum method: Overview, applications and current directions. DOI: 10.1023/A:1026098010127

  14. Ortiz, M., Phillips, R., and Tadmor, E. B., Quasicontinuum analysis of defects in solids. DOI: 10.1080/01418619608243000

  15. Ortner, C., A priori and a posteriori analysis of the quasi-nonlocal quasicontinuum method in 1d.

  16. Ortner, C. and Süli, E., Analysis of a quasicontinuum method in one dimension. DOI: 10.1051/m2an:2007057

  17. Shenoy, V. B., Miller, R., Tadmor, E. B., Rodney, D., Phillips, R., and Ortiz, M., An adaptive finite element approach to atomic-scale mechanics–the quasicontinuum method. DOI: 10.1016/S0022-5096(98)00051-9

  18. Shimokawa, T., Mortensen, J. J., Schiotz, J., and Jacobsen, K. W., Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region. DOI: 10.1103/PhysRevB.69.214104

  19. Tikhonov, A. N. and Samarskii, A. A., Homogeneous difference schemes. DOI: 10.1016/0041-5553(62)90005-8


Articles with similar content:

BEYOND BLACK-BOXES IN BAYESIAN INVERSE PROBLEMS AND MODEL VALIDATION: APPLICATIONS IN SOLID MECHANICS OF ELASTOGRAPHY
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 5
L. Bruder, Phaedon-Stelios Koutsourelakis
INCREASING THE REPRESENTATION OF WOMEN FACULTY IN STEM DEPARTMENTS: WHAT MAKES A DIFFERENCE?
Journal of Women and Minorities in Science and Engineering, Vol.22, 2016, issue 1
Keith A. Herzog, Janet E. Malley, Abigail J. Stewart
MATHEMATICAL MODELLING AS A BASIS OF EXPERT SYSTEM DEVELOPMENT FOR WEAR PROCESSES IN ENERGY PLANT COMPONENTS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 1992, issue
G. Beckmann
Mathematical Modeling and Visualization of Multilevel Mass Transfer System in Heterogeneous Catalytic Media of Nanoporous Particles
Journal of Automation and Information Sciences, Vol.40, 2008, issue 10
Mikhail R. Petryk, Jack Fraissard
NUMERICAL COMPUTATION OF NATURAL CONVECTION ON UNSTRUCTURED HYBRID MESH WITHOUT PRECONDITIONING
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Nikhil Kalkote, Vinayak Eswaran