Suscripción a Biblioteca: Guest
International Journal for Multiscale Computational Engineering

Publicado 6 números por año

ISSN Imprimir: 1543-1649

ISSN En Línea: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

COARSE GRAINING OF ATOMISTIC DESCRIPTION AT FINITE TEMPERATURE USING FORMAL ASYMPTOTICS

Volumen 10, Edición 1, 2012, pp. 13-31
DOI: 10.1615/IntJMultCompEng.2011002218
Get accessGet access

SINOPSIS

In this paper, we propose a computational method for coarse graining the atomistic description at finite temperature using formal asymptotics. The method is based on the ansatz that there exists a separation of scales between the time scale of the atomic fluctuations and that of the thermodynamic processes, such as thermal expansion. We use the WKB method to propose an averaging scheme for treating the thermal degrees of freedom and deriving an effective Hamiltonian for the atomistic system. This energy functional is incorporated into the quasicontinuum framework to achieve a seamless coarse graining on the spatial scale. Numerical validation is performed by computing the thermal equilibrium properties of selected materials. The scope of the method based on the use of perturbation theory is discussed, and its capability is illustrated by way of simulating dislocation nucleation under a nanoindenter.

REFERENCIAS
  1. Belytschko, T. and Xiao, S., Coupling methods for continuum models with molecular models. DOI: 10.1615/IntJMultCompEng.v1.i1.100

  2. Bender, C. M. and Orszag, S. A., Advanced Mathematical Methods for Scientists and Engineers.

  3. Bornemann, F. A., Homogenization in time of singularly perturbed mechanical systems.

  4. Broughton, J. Q., Abraham, F. F., Bernstein, N., and Kaxiras, E., Concurrent coupling of length scales: Methodology and application. DOI: 10.1103/PhysRevB.60.2391

  5. Curtin, W. and Miller, R., Atomistic/continuum coupling in computational materials science. DOI: 10.1088/0965-0393/11/3/201

  6. Dupuy, L. M., Tadmor, E. B., Miller, R. E., and Phillips, R., Finite-temperature quasicontinuum: Molecular dynamics without all the atoms. DOI: 10.1103/PhysRevLett.95.060202

  7. E, W. and Engquist, B., Heterogeneous multiscale methods.

  8. Fish, J., Chen, W., and Li, R., Generalized mathematical homogenization of atomistic media at finite temperatures in three dimensions. DOI: 10.1016/j.cma.2006.08.001

  9. Fish, J., Nuggehally, M. A., Shephard, M. S., Picu, C. R., Badia, S., Parks, M. L., and Gunzburger, M., Concurrent atc coupling based on a blend of the continuum stress and the atomistic force. DOI: 10.1016/j.cma.2007.05.020

  10. Fish, J. and Schwob, C., Constitutive modeling based on atomistics. DOI: 10.1615/IntJMultCompEng.v1.i1.50

  11. Hull, D. and Bacon, D. J., Introduction to Dislocations.

  12. Johnson, R. A., Analytic nearest-neighbor model for fcc metals. DOI: 10.1103/PhysRevB.37.3924

  13. Kelchner, C. L., Plimpton, S. J., and Hamilton, J. C., Dislocation nucleation and defect structure during surface nanoindentation. DOI: 10.1103/PhysRevB.58.11085

  14. Knap, J. and Ortiz, M., Ananalysis of the quasicontinuum method. DOI: 10.1016/S0022-5096(01)00034-5

  15. Kulkarni, Y., Knap, J., and Ortiz, M., A variational approach to coarse graining of equilibrium and non-equilibrium atomistic description at finite temperature. DOI: 10.1016/j.jmps.2007.09.005

  16. LeSar, R., Najafabadi, R., and Srolovitz, D., Finite-temperature defect properties from free-energy minimization. DOI: 10.1103/PhysRevLett.63.624

  17. Li, A., Li, R., and Fish, J., Generalized mathematical homogenization: From theory to practice. DOI: 10.1016/j.cma.2007.12.002

  18. Lu, G. and Kaxiras, K., An overview of multiscale simulations of materials.

  19. Marian, J., Venturini, G., Hansen, B., Knap, J., Ortiz, M., and Campbell, G., Finite-temperature extension of the quasicontinuum method using langevin dynamics: Entropy losses and analysis of errors. DOI: 10.1088/0965-0393/18/1/015003

  20. Nix, F. C. and MacNair, D., The thermal expansion of pure metals: Copper, gold, aluminum, nickel and iron. DOI: 10.1103/PhysRev.60.597

  21. Rudd, R. E. and Broughton, J. Q., Coarse-grained molecular dynamics: Nonlinear finite elements and finite temperature. DOI: 10.1103/PhysRevB.72.144104

  22. Schuh, C. A., Mason, J. K., and Lund, A. C., Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. DOI: 10.1038/nmat1429

  23. Shenoy, V., Shenoy, V., and Phillips, R., Finite temperature quasicontinuum methods.

  24. Tadmor, E. B., Ortiz, M., and Phillips, R., Quasi continuum analysis of defects in solids. DOI: 10.1080/01418619608243000

  25. Tadmor, E. B., Phillips, R., and Ortiz, M., Mixed atomistic and continuum models of deformation in solids. DOI: 10.1021/la9508912

  26. Tang, Z., Zhao, H., Li, G., and Aluru, N. R., Finite-temperature quasicontinuum method for multiscale analysis of silicon nanostructures. DOI: 10.1103/PhysRevB.74.064110

  27. Weiner, J. H., Statistical Mechanics of Elasticity.

  28. Wu, Z. B., Diestler, D. J., Feng, R., and Zeng, X. C., Coarse-graining description of solid systems at nonzero temperature. DOI: 10.1063/1.1607914

  29. Zubarev, D. N., Non-Equilibrium Statistical Thermodynamics.

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain