Suscripción a Biblioteca: Guest
International Journal for Multiscale Computational Engineering

Publicado 6 números por año

ISSN Imprimir: 1543-1649

ISSN En Línea: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

SADDLE NODE SCALING ON APPROACH TO DISLOCATION NUCLEATION

Volumen 10, Edición 1, 2012, pp. 101-108
DOI: 10.1615/IntJMultCompEng.2011002554
Get accessGet access

SINOPSIS

We study the process of dislocation nucleation in aperfect 2D hexagonal crystal under nano-indentation loading in anumerical model using energy minimization techniques and analysisof the energy eigenmodes. The nucleation event takes the form ofa saddle-node catastrophe and is governed by associated scalinglaws In particular, on approach to nucleation, a single energyeigenmode descends through the spectrum and its eigenvaluevanishes as the square root of the distance to the nucleationpoint. The velocity of the system shows the same scalingbehavior, and its normal-mode decomposition demonstrates that itis dominated by the critical mode responsible for nucleation.

REFERENCIAS
  1. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids.

  2. Christopher, D., Smith, R., and Richter, A., Atomistic modelling of nanoindentation in iron and silver. DOI: 10.1088/0957-4484/12/3/328

  3. de la Fuente, O. R., Zimmerman, J. A., Gonzalez, M. A., de la Figuera, J., Hamilton, J. C., Pai, W. W., and Rojo, J. M., Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunneling microscopy and atomistic simulations.

  4. Delph, T. J. and Zimmerman, J. A., Prediction of instabilities at the atomic scale. DOI: 10.1088/0965-0393/18/4/045008

  5. Delph, T. J., Zimmerman, J. A., Rickman, J. M., and Kunz, J. M., A local instability criterion for solid-state defects. DOI: 10.1016/j.jmps.2008.10.005

  6. Farkas, D., Duranduru, M., Curtin, W. A., and Ribbens, C., Multiple-dislocation emission from the crack tip in the ductile fracture of al. DOI: 10.1080/01418610110033984

  7. Gerberich, W. W., Tymiak, N. I., Grunlan, J. C., Horstemeyer, M. F., and Baskes, M. I., Interpretations of indentation size effects. DOI: 10.1115/1.1469004

  8. Gumbsch, P. and Beltz, G. E., On the continuum versus atomistic descriptions of dislocation nucleation and cleavage in nickel. DOI: 10.1088/0965-0393/3/5/002

  9. Guo, Y. F., Wang, C. Y., and Zhao, D. L., Atomistic simulation of crack cleavage and blunting in bcc-fe. DOI: 10.1016/S0921-5093(02)00287-3

  10. Hai, S. and Tadmor, E. B., Deformation twinning at aluminum crack tips. DOI: 10.1016/S1359-6454(02)00367-1

  11. Hora, P., Pelikan, V., Machova, A., Spielmannova, A., Prahl, J., Landa, M., and Cervena, O., Crack induced slip processes in 3d. DOI: 10.1016/j.engfracmech.2007.05.013

  12. Jin, J., Shevlin, S. A., and Guo, Z. X., Multiscale simulation of onset plasticity during nanoindentation of al (001) surface. DOI: 10.1016/j.actamat.2008.04.064

  13. Knap, J. and Ortiz, M., Effect of indenter-radius size on au(001) nanoindentation. DOI: 10.1103/PhysRevLett.90.226102

  14. Kucherov, L. and Tadmor, E. B., Twin nucleation mechanisms at a crack tip in an hcp material: Molecular simulation. DOI: 10.1016/j.actamat.2006.10.056

  15. Landman, U., Luedtke, W. D., Burnham, N. A., and Colton, R. J., Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. DOI: 10.1126/science.248.4954.454

  16. Li, J., The mechanics and physics of defect nucleation. DOI: 10.1557/mrs2007.48

  17. Li, J., Van Vliet, K. J., Zhu, T., Yip, S., and Suresh, S., Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. DOI: 10.1038/nature00865

  18. Li, J., Zhu, T., Yip, S., Van Vliet, K. J., and Suresh, S., Elastic criterion for dislocation nucleation. DOI: 10.1016/j.msea.2003.09.003

  19. Lilleodden, E. T., Zimmerman, J. A., Foiles, S. M., and Nix, W. D., Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. DOI: 10.1016/S0022-5096(02)00119-9

  20. Maloney, C. and Lemaitre, A., Universal breakdown of elasticity at the onset of material failure. DOI: 10.1103/PhysRevLett.93.195501

  21. Maloney, C. E. and Lacks, D. J., Energy barrier scalings in driven systems. DOI: 10.1103/PhysRevE.73.061106

  22. Maloney, C. E. and Lemaitre, A., Amorphous systems in athermal, quasistatic shear. DOI: 10.1103/PhysRevE.74.016118

  23. Miller, R. E. and Acharya, A., A stress-gradient based criterion for dislocation nucleation in crystals. DOI: 10.1016/j.jmps.2004.01.007

  24. Miller, R. E. and Rodney, D., On the nonlocal nature of dislocation nucleation during nanoindentation. DOI: 10.1016/j.jmps.2007.10.005

  25. Miller, R. E., Shilkrot, L. E., and Curtin, W. A., A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films. DOI: 10.1016/j.actamat.2003.09.011

  26. Nocedal, J. and Wright, S., Numerical Optimization.

  27. Plimpton, S., Fast parallel algorithms for short-range molecular dynamics. DOI: 10.1006/jcph.1995.1039

  28. Rice, J. R., Dislocation nucleation from a crack tip–an analysis based on the peierls concept. DOI: 10.1016/S0022-5096(05)80012-2

  29. Rice, J. R. and Beltz, G. E., The activation-energy for dislocation nucleation at a crack. DOI: 10.1016/0022-5096(94)90013-2

  30. Shenoy, V. B., Phillips, R., and Tadmor, E. B., Nucleation of dislocations beneath a plane strain indenter. DOI: 10.1016/S0022-5096(99)00055-1

  31. Sun, Y. M., Beltz, G. E., and Rice, J. R., Estimates from atomic models of tension shear coupling in dislocation nucleation from a crack-tip. DOI: 10.1016/0921-5093(93)90370-T

  32. Tadmor, E. B., Miller, R., Phillips, R., and Ortiz, M., Nanoindentation and incipient plasticity. DOI: 10.1557/JMR.1999.0300

  33. Tanguy, D., Razafindrazaka, M., and Delafosse, D., Multiscale simulation of crack tip shielding by a dislocation. DOI: 10.1016/j.actamat.2008.01.031

  34. Van Vliet, K. J., Li, J., Zhu, T., Yip, S., and Suresh, S., Quantifying the early stages of plasticity through nanoscale experiments and simulations. DOI: 10.1103/PhysRevB.67.104105

  35. Warner, D. H. and Curtin, W. A., Origins and implications of temperature-dependent activation energy barriers for dislocation nucleation in face-centered cubic metals. DOI: 10.1016/j.actamat.2009.05.024

  36. Warner, D. H., Curtin, W. A., and Qu, S., Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals. DOI: 10.1038/nmat2030

  37. Xie, H. X., Wang, C. Y., and Yu, T., Atomistic simulation of fracture in Ni3Al. DOI: 10.1557/JMR.2008.0192

  38. Zhu, T., Li, J., and Yip, S., Atomistic study of dislocation loop emission from a crack tip. DOI: 10.1103/PhysRevLett.93.025503

  39. Zimmerman, J. A., Kelchner, C. L., Klein, P. A., Hamilton, J. C., and Foiles, S. M., Surface step effects on nanoindentation. DOI: 10.1103/PhysRevLett.87.165507

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain