Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Multiscale Computational Engineering
Factor de Impacto: 1.016 Factor de Impacto de 5 años: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimir: 1543-1649
ISSN En Línea: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v6.i5.80
pages 499-510

Development of a Concrete Unit Cell

Erez Gal
Department of Structural Engineering, Ben-Gurion University, Beer-Sheva, 84105, Israel
Avshalom Ganz
Department of Structural Engineering, Ben-Gurion University, Beer-Sheva, 84105, Israel
Liran Hadad
Department of Structural Engineering, Ben-Gurion University, Beer-Sheva, 84105, Israel
Roman Kryvoruk
Department of Structural Engineering, Ben-Gurion University, Beer-Sheva, 84105, Israel

SINOPSIS

This paper describes the development of a unit cell for concrete structures. Executing a multiscale analysis procedure using the theory of homogenization requires solving a periodic unit cell problem of the material in order to evaluate the material macroscopic properties. The presented research answers that need by creating a concrete unit cell through using the concrete paste generic information (i.e., percentage of aggregate in the concrete and the aggregate distribution). The presented algorithm manipulates the percentage of the aggregate weight and distribution in order to create a finite element unit cell model of the concrete to be used in a multiscale analysis of concrete structures. This algorithm adjusts the finite element meshing with respect to the physical unit cell size, creates virtual sieves according to adjusted probability density functions, transforms the aggregate volumes into a digitized discrete model of spheres, places the spheres using the random sampling principle of the Monte Carlo simulation method in a periodic manner, and constructs a finite element input file of the concrete unit cell appropriate for running a multiscale analysis using the theory of homogenization.


Articles with similar content:

DEVELOPMENT OF THREE-DIMENSIONAL ADAPTIVE MESH GENERATION FOR MULTISCALE APPLICATIONS
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 3
Lukasz Madej, Konrad Perzynski, Krzysztof Banas, Filip Kruzel
STRUCTURE/MATERIAL CONCURRENT OPTIMIZATION OF LATTICE MATERIALS BASED ON EXTENDED MULTISCALE FINITE ELEMENT METHOD
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 1
Wenbo Hu, Zunyi Duan , Jun Yan
Nonlinear viscoelastic analysis of statistically homogeneous random composites
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Michal Sejnoha, R. Valenta, Jan Zeman
Eigendeformation-Based Homogenization of Concrete
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 1
Zheng Yuan, Jacob Fish, Wei Wu
ESSENTIAL FEATURES OF FINE SCALE BOUNDARY CONDITIONS FOR SECOND GRADIENT MULTISCALE HOMOGENIZATION OF STATISTICAL VOLUME ELEMENTS
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 5
David L. McDowell, Darby Luscher, Curt Bronkhorst