Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Multiscale Computational Engineering
Factor de Impacto: 1.016 Factor de Impacto de 5 años: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Imprimir: 1543-1649
ISSN En Línea: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v4.i4.50
pages 475-486

Iterative Algorithms for Computing the Averaged Response of Nonlinear Composites under Stress-Controlled Loadings

Takahiro Yamada
Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

SINOPSIS

Formulations of linear and nonlinear multiscale analyses for media with lattice periodic microstructures based on the homogenization theory are proposed. For continuum media, the conventional homogenization theory leads to boundary value problems of continuum for both micro- and macroscales. However, it is rational to discretize lattice microstructures, such as cellular solids, by frame elements since they consist of slender members. The main difficulty in utilizing structural elements, such as frame elements, for microscale problems is due to the inconsistency between the kinematics assumed for the frame elements and the periodic displacement field for the microscale problem. In order to overcome this difficulty, we propose a formulation that does not employ the periodic microscale displacement, but the total displacement, including the displacement due to uniform deformation as well as periodic deformation, as the independent variable of the micro scale problem. Some numerical examples of cellular solids are provided to show both the feasibility and the computational efficiency of the proposed method.


Articles with similar content:

Multiscale Modeling for Planar Lattice Microstructures with Structural Elements
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Ken Ooue, Isao Saiki, Kenjiro Terada, Akinori Nakajima
A COMPUTATIONAL APPROACH FOR EVALUATING THE EFFECTIVE ELASTIC MODULI OF NON-SPHERICAL PARTICLE REINFORCED COMPOSITES WITH INTERFACIAL DISPLACEMENT AND TRACTION JUMPS
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 2
Shui Tao Gu, JianTao Liu, Qi-Chang He
PERTURBATION-BASED SURROGATE MODELS FOR DYNAMIC FAILURE OF BRITTLE MATERIALS IN A MULTISCALE AND PROBABILISTIC CONTEXT
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 3
Junwei Liu , Lori Graham-Brady
Multiscale Modeling of Composite Materials by a Multifield Finite Element Approach
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
Patrizia Trovalusci, V. Sansalone, F. Cleri
MULTISCALE PARAMETER IDENTIFICATION
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 4
Paul Steinmann, Julia Mergheim, Ulrike Schmidt