Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
International Journal for Multiscale Computational Engineering
Factor de Impacto: 1.016 Factor de Impacto de 5 años: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Imprimir: 1543-1649
ISSN En Línea: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v4.i4.20
pages 429-444

Multiscale Modeling for Planar Lattice Microstructures with Structural Elements

Isao Saiki
Department of civil Engineering, Tohoku University, Sendai 980-8579, Japan
Ken Ooue
Kawada Construction Co., Ltd, Tokyo 114-8505, Japan
Kenjiro Terada
Department of civil Engineering, Tohoku University, Sendai 980-8579, Japan
Akinori Nakajima
Department of Civil Engineering, Utsunomiya University, Utsunomiya 321-8585, Japan

SINOPSIS

Formulations of linear and nonlinear multiscale analyses for media with lattice periodic microstructures based on the homogenization theory are proposed. For continuum media, the conventional homogenization theory leads to boundary value problems of continuum for both micro- and macroscales. However, it is rational to discretize lattice microstructures, such as cellular solids, by frame elements since they consist of slender members. The main difficulty in utilizing structural elements, such as frame elements, for microscale problems is due to the inconsistency between the kinematics assumed for the frame elements and the periodic displacement field for the microscale problem. In order to overcome this difficulty, we propose a formulation that does not employ the periodic microscale displacement, but the total displacement, including the displacement due to uniform deformation as well as periodic deformation, as the independent variable of the microscale problem. Some numerical examples of cellular solids are provided to show both the feasibility and the computational efficiency of the proposed method.


Articles with similar content:

Iterative Algorithms for Computing the Averaged Response of Nonlinear Composites under Stress-Controlled Loadings
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Takahiro Yamada
AN XFEM BASED MULTISCALE APPROACH TO FRACTURE OF HETEROGENEOUS MEDIA
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 6
Mirmohammadreza Kabiri, Franck J. Vernerey
Comparisons of the Size of the Representative Volume Element in Elastic, Plastic, Thermoelastic, and Permeable Random Microstructures
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 2
X. Du, Martin Ostoja-Starzewski, Z. F. Khisaeva, W. Li
Computational Homogenization of Nonlinear Hydromechanical Coupling in Poroplasticity
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 5-6
Fernando A. Rochinha, Marcio A. Murad, Jesus A. Luizar-Obregon
Computational Evaluation of Strain Gradient Elasticity Constants
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
N. A. Fleck, R. H. J. Peerlings