Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Computational Thermal Sciences: An International Journal
ESCI SJR: 0.249 SNIP: 0.434 CiteScore™: 0.7

ISSN Imprimir: 1940-2503
ISSN En Línea: 1940-2554

Computational Thermal Sciences: An International Journal

DOI: 10.1615/ComputThermalScien.2018020672
pages 307-320

DOUBLE DIFFUSIVE NATURAL CONVECTION IN A SQUARE ENCLOSURE FILLED WITH COPPER-WATER NANOFLUID INDUCED BY OPPOSITE TEMPERATURE AND CONCENTRATION GRADIENTS

Natesan Saritha
School of Mechanical Engineering, VIT University, Vellore, India
A. Senthil Kumar
School of Mechanical Engineering, VIT University, Vellore, India

SINOPSIS

Double-diffusive natural convection in a Cu–water nanofluid-filled square enclosure neglecting the effect of Soret and Dufour is studied numerically. The horizontal walls are well insulated and impermeable, while the vertical walls are imposed to opposite temperature and concentration gradients. Brinkman, Maxwell–Garnett models are used to determine the effective dynamic viscosity and thermal conductivity of Cu–water nanofluid, respectively. A computational code based on the SIMPLE algorithm is used to solve the system of conservation equations of mass, momentum, energy, and species. Simulations are performed using the thermal Rayleigh number, the buoyancy ratio, and the solid volume fraction as independent variables. The numerical results are studied in terms of velocity profiles, streamlines, isotherms, iso-concentrations, local and average Nusselt numbers, and Sherwood number for a wide range of Rayleigh number Ra = 104–105, the buoyancy ratio N = 0.1–10 and the solid volume fraction (0 ≤ φ ≤ 0.1) with Prandtl number Pr = 5.0 and Lewis number Le = 1. It is found that utilizing Cu–water nanofluid enhances the heat transfer sufficiently while the enhancement is marginal for the mass transfer. It is also observed that the fluid flow behavior increases with increasing Rayleigh number but decreases with increasing solid volume fraction.


Articles with similar content:

HEAT TRANSFER ENHANCEMENT OF UNIFORMLY/LINEARLY HEATED SIDE WALL IN A SQUARE ENCLOSURE UTILIZING ALUMINA−WATER NANOFLUID
Computational Thermal Sciences: An International Journal, Vol.9, 2017, issue 3
Senthil Kumar Arumugam, Sathiyamoorthy Murugesan, Ali J. Chamkha, Saritha Natesan
Effectiveness and Economic for Using Ag-Nanoparticles in Porous Media inside Enclosure with Present Heat Generation and Magnetic Field under Natural Convection Conditions
International Journal of Fluid Mechanics Research, Vol.42, 2015, issue 6
Ali Meerali Jasim Al-Zamily
MIXED CONVECTION IN A TWO-SIDED LID-DRIVEN POROUS CAVITY SATURATED WITH NANOFLUID
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Nirmal Kumar Manna, Nirmalendu Biswas, Soumyodeep Mukherjee
NATURAL CONVECTION IN A SQUARE POROUS CAVITY WITH LINEARLY HEATED SIDE WALL USING A THERMAL NONEQUILIBRIUM MODEL
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2017, issue
Abdeslam Omara, Said Abboudi, Abderrahim Bourouis
MAGNETO CONVECTION HEAT TRANSFER IN A POROUS SQUARE CAVITY USING LOCAL THERMAL NON-EQUILIBRIUM APPROACH
Special Topics & Reviews in Porous Media: An International Journal, Vol.10, 2019, issue 2
N. Nithyadevi, Muthu Rajarathinam