Suscripción a Biblioteca: Guest
Atomization and Sprays

Publicado 12 números por año

ISSN Imprimir: 1044-5110

ISSN En Línea: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF THE EFFECTS OF CAVITATION REGIME ON SPRAY PARAMETERS OF STEPPED PLAIN ORIFICE ATOMIZERS

Volumen 29, Edición 4, 2019, pp. 351-380
DOI: 10.1615/AtomizSpr.2019029000
Get accessGet access

SINOPSIS

An experimental/computational study is presented to investigate the global spray characteristics of a stepped plain orifice atomizer composed of a small orifice upstream, a large orifice downstream coaxial with the small orifice, and a sharp transition between the small and large orifices. We explore a series of five different stepped geometries that gives rise to different two-phase flow patterns within the injector that translate to differences in spray angle, discharge coefficient, and droplet statistics. It was discovered that the stepped geometry operates in four distinct regimes that are controlled by the two-phase flow regime at the exit plane of the injector. Unlike conventional injectors, spray angle, discharge coefficient, and droplet size vary dramatically across the operating regimes for these injectors. An axisymmetric computational model was exercised across relevant operating conditions, and calculated turbulence quantities were compared to measured spray angles and droplet sizes across all operating regimes. It was found that the spray angle is strongly proportional to the turbulence intensity at the exit plane of the injector, and the average droplet size is strongly inversely proportional to the turbulent kinetic energy at the exit plane of the injector.

REFERENCIAS
  1. Antal, S.P., Lahey, R.T., and Flaherty, J.E., Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow, Int. J. Multiphase Flow, vol. 17, no. 5, pp. 635-652,1991.

  2. Arcoumanis, C., Flora, H., Gavaises, M., and Badami, M., Cavitation in Real-Size Multi-Hole Diesel Injector Nozzles, SAE 2000 World Congress, Detroit, MI, 2000.

  3. Burns, A.D., Frank, T., Hamill, I., and Shi, J., The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows, Proc. of 5th International Conference on Multiphase Flow, ICMF04, Yokohama, Japan, 2004.

  4. Canny, J., A Computational Approach to Edge Detection, IEEE Trans. Pattern Anal. Mach. Intell., vol. 8, no. 6, pp. 679-698,1986.

  5. Chausalkar, A., Kong, S., and Michael, J., Multicomponent Droplet Breakup during Heated Wall Impingement, ILASS-Americas 29th Annual Conf. on Liquid Atomization and Spray Systems, Atlanta, GA, 2017.

  6. Cole, G.S., Scaringe, R.P., Roth, R.P., and Peles, Y., System Evaluation of Cavitation Enhanced Heat Transfer in Microchannels, Power Systems Conference, 2006.

  7. Duke, D., Swantek, A., Tilocco, Z., Kastengren, A., Fezzaa, K., Neroorkar, K., Moulai, M., Powell, C., and Schmidt, D., X-Ray Imaging of Cavitation in Diesel Injectors, SAE Int. J. Engines, vol. 7, no. 2, pp. 1003-1016,2014.

  8. Han, J.-S., Lu, P.-H., Xie, X.-B., Lai, M.-C., and Henein, N.A., Investigation of Diesel Spray Primary Break-Up and Development for Different Nozzle Geometries, SAE Powertrain Fluid Systems Conf. Exhibition, San Diego, CA, 2002.

  9. He, Z., Zhong, W., Wang, Q., Jiang, Z., and Shao, Z., Effect of Nozzle Geometrical and Dynamic Factors on Cavitating and Turbulent Flow in a Diesel Multi-Hole Injector Nozzle, Int. J. Therm. Sci., vol. 70, Supplement C, pp. 132-143,2013.

  10. Hoire, A. and Ziou, D., Image Quality Metrics: PSNR vs. SSIM, 20th Int. Conf. on Pattern Recognition, Istanbul, Turkey, 2010.

  11. Im, K.S., Cheong, S.K., Powell, C.F., Lai, M.C., and Wang, J., Unraveling the Geometry Dependence of In-Nozzle Cavitation in High-Pressure Injectors, Sci. Rep, vol. 3, p. 2067, 2013.

  12. Ishii, M. and Hibiki, T., Thermo-Fluid Dynamics of Two-Phase Flow, Berlin: Springer, 2007.

  13. Jahangirian, S., Egelja, A., and Li, H., A Detailed Computational Analysis of Cavitating and Non-Cavitating High Pressure Diesel Injectors, SAE 2016 World Congress and Exhibition, Detroit, MI, 2016.

  14. Lad, N., Aroussi, A., and Muhamad Said, M.F., Droplet Size Measurement for Liquid Spray Using Digital Image Analysis Technique, J. Appl. Sci., vol. 11, pp. 1966-1972,2011.

  15. Lefebvre, A.H., Atomization and Sprays, New York: Hemisphere Pub. Corp., 1989.

  16. Liu, H.-L., Wang, J., Wang, Y., Zhang, H., and Huang, H., Influence of the Empirical Coefficients of Cavitation Model on Predicting Cavitating Flow in the Centrifugal Pump, Int. J. Naval Architect. Ocean Eng., vol. 6, no. 1,pp. 119-131,2014.

  17. Mitroglou, N., Lorenzi, M., Santini, M., and Gavaises, M., Application of X-Ray Micro-Computed Tomography on High-Speed Cavitating Diesel Fuel Flows, Experiments Fluids, vol. 57, no. 11, p. 175, 2016.

  18. Mitroglou, N., McLorn, M., Gavaises, M., Soteriou, C., and Winterbourne, M., Instantaneous and Ensemble Average Cavitation Structures in Diesel Micro-Channel Flow Orifices, Fuel, vol. 116, Supplement C, pp. 736-742, 2014.

  19. Morel, C., Turbulence Modeling and First Numerical Simulations in Turbulent Two-Phase Flows, CEA, Grenoble, France, Tech. Rep. SMTH/LDMS/97-023, 1997.

  20. Nurick, W.H., Orifice Cavitation and Its Effect on Spray Mixing, J. Fluids Eng., vol. 98, no. 4, pp. 681-687, 1976.

  21. Payri, F., Bermudez, V., Payri, R., and Salvador, F.J., The Influence of Cavitation on the Internal Flow and the Spray Characteristics in Diesel Injection Nozzles, Fuel, vol. 83, no. 4, pp. 419-431, 2004.

  22. Payri, F., Payri, R., Salvador, F.J., and Martinez-Lopez, J., A Contribution to the Understanding of Cavita- tion Effects in Diesel Injector Nozzles through a Combined Experimental and Computational Investigation, Computers Fluids, vol. 58, Supplement C, pp. 88-101, 2012.

  23. Politano, M.S., Carrica, P.M., and Converti, J., A Model for Turbulent Polydisperse Two-Phase Flow in Vertical Channels, Int. J. Multiphase Flow, vol. 29, no. 7, pp. 1153-1182, 2003.

  24. Reitz, R.D., Atomization and Other Breakup Regimes of a Liquid Jet, PhD, Princeton, 1978.

  25. Roth, H., Gavaises, M., and Arcoumanis, C., Cavitation Initiation, Its Development and Link with Flow Turbulence in Diesel Injector Nozzles, SAEInt. J. Engines, vol. 111, no. 3, pp. 561-580, 2002.

  26. Rzehak, R. and Krepper, E., CFD Modeling of Bubble-Induced Turbulence, Int. J. Multiphase Flow, vol. 55, Supplement C, pp. 138-155, 2013.

  27. Saha, K. and Li, X., Assessment of Cavitation Models for Flows in Diesel Injectors with Single- and Two-Fluid Approaches, J. Eng. Gas Turbines Power, vol. 138, no. 1, pp. 011504-011511, 2015.

  28. Schiller, L. and Naumann, Z., A Drag Coefficient Correlation, Z. Ver. Deutsch. Ing, vol. 77, pp. 318-320, 1935.

  29. Schneider, B., Kosar, A., and Peles, Y., Hydrodynamic Cavitation and Boiling in Refrigerant (R-123) Flow inside Microchannels, Int. J. Heat Mass Transf., vol. 50, no. 13, pp. 2838-2854, 2007.

  30. Som, S., Aggarwal, S.K., El-Hannouny, E.M., and Longman, D.E., Investigation of Nozzle Flow and Cavitation Characteristics in a Diesel Injector, J. Eng. Gas Turbines Power, vol. 132, no. 4, pp. 042802-042812,2010.

  31. Soteriou, C., Andrews, R., and Smith, M., Direct Injection Diesel Sprays and the Effect of Cavitation and Hydraulic Flip on Atomization, Warrendale, PA: SAE International, 1995.

  32. Sou, A., Hosokawa, S., and Tomiyama, A., Effects of Cavitation in a Nozzle on Liquid Jet Atomization, Int. J. Heat Mass Transf, vol. 50, no. 17, pp. 3575-3582,2007.

  33. Sun, Z.-Y., Li, G.-X., Chen, C., Yu, Y.-S., and Gao, G.-X., Numerical Investigation on Effects of Nozzle's Geometric Parameters on the Flow and the Cavitation Characteristics within Injector's Nozzle for a High-Pressure Common-Rail DI Diesel Engine, Energy Convers. Manage., vol. 89, Supplement C, pp. 843-861,2015.

  34. Sykes, D., Gattoni, J., and Yelvington, P.E., Investigation of Spray Regimes for a Supercavitating Injector Geometry, ILASS-Americas 29th Annual Conf. on Liquid Atomization and Spray Systems, Atlanta, GA, 2017.

  35. Tomiyama, A., Kataoka, I., Zun, I., and Sakaguchi, T., Drag Coefficients of Single Bubbles under Normal and Micro Gravity Conditions, JSMEInt. J. Ser. B, vol. 41, no. 2, pp. 472-479, 1998.

  36. Torelli, R., Som, S., Pei, Y., and Traver, M., Internal Nozzle Flow Simulations of Gasoline-Like Fuels under Diesel Operating Conditions, ILASS-Americas 29th Annual Conf. on Liquid Atomization and Spray Systems, Atlanta, GA, 2017.

  37. Troshko, A.A., A Two-Equation Multidimensional Model of Turbulent Bubbly Flows, PhD, Texas A&M University, 2000.

  38. Zhou, X., Measurement and Modeling of the Liquid-Phase Turbulence in Adiabatic Air-Water Two-Phase Flows with a Wide Range of Void Fractions, PhD, Ohio State University, 2014.

  39. Zwart, P.J., Gerber, A.G., and Belarmi, T., A Two-Phase Flow Model for Predicting Cavitation Dynamics, Fifth Int. Conf. on Multiphase Flow, Yokohama, Japan, 2004.

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain