Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.189 Factor de Impacto de 5 años: 1.596 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v12.i4.10
pages 359-386

APPLICATION OF ARTIFICIAL NEURAL NETWORKS MODELING TO SPRAYS AND SPRAY IMPINGEMENT HEAT TRANSFER

M. A. Aamir
Department of Mechanical, Aerospace and Manufacturing Engineering, UMIST, Manchester, United Kingdom
M. M. Awais
Department of Mechanical Engineering, Imperial College, London, United Kingdom
A. Paul Watkins
Energy and Multiphysics Research Group, School of Mechanical, Aerospace, and Civil Engineer- ing, University of Manchester, United Kingdom

SINOPSIS

Artificial neural networks (ANN) models have been developed and applied to free propane sprays and to water spray cooling heat flux predictions. For the propane spray conditions the ANN model is trained against the computational fluid dynamics (CFD) results and verified against experimental data for drop diameter at the centreline 95 mm from the nozzle. It is shown that an ANN model trained on CFD gives results comparable to the CFD predictions and that it can therefore be employed online in industry to investigate and limit the consequences of a depressurization accident. When enough experimental data are present, as in the spray cooling case, the ANN model can be welt trained and proves to be an alternative numerical modeling technique to CFD, with the numerical predictions comparable to the CFD predictions, but in real-time mode.


Articles with similar content:

NEURAL NETWORK MODEL FOR ON-LINE THERMAL MARGIN ESTIMATION OF A NUCLEAR POWER PLANT
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 1992, issue
Soon-Heung Chang, Seung-Hyuk Lee, Hyun-Koon Kim

Neural Network Model for On-Line Thermal Margin Estimation of a Nuclear Power Plant
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 1992, issue
Soon-Heung Chang, Seung-Hyuk Lee, Hyun-Koon Kim

Modelling of Flow Boiling Process in Small Diameter Tubes
ICHMT DIGITAL LIBRARY ONLINE, Vol.2, 2004, issue
Dariusz Mikielewicz, Jaroslaw Mikielewicz

SCALAR TRANSPORT MODELLING OF TURBULENT JET DIFFUSION FLAMES
Turbulence and Shear Flow Phenomena -1 First International Symposium, Vol.0, 1999, issue
Yang Zhang, Wai-Tung Chan

3.9 Boiling Water Reactor LOCA/ECCS Integral Tests at ROSA-III Facility of JAERI
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 1982, issue
Masayoshi Shiba, Kunihisa Soda, Kanji Tasaka