Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2012004192
pages 655-672

EFFECT OF INTERNAL FLOW STRUCTURE IN CIRCULAR AND ELLIPTICAL NOZZLES ON SPRAY CHARACTERISTICS

Kun Woo Ku
Department of Mechanical Engineering, Kyungpook National University, 80 Daehak-ro Buk-gu, Daegu, Republic of Korea
Jung Goo Hong
Department of Mechanical Engineering, Kyungpook National University, 80 Daehak-ro Buk-gu, Daegu, Republic of Korea
Choong-Won Lee
Department of Mechanical Engineering, Kyungpook National University,1370 Sankyuk-dong Buk-gu, Daegu, Republic of Korea

SINOPSIS

An experimental study was performed to investigate the atomization characteristics of a circular nozzle and elliptical nozzles of small diameter under high injection pressure, which has a hydraulic flip condition for the nozzle internal flow structure. The flow rate and drop size characteristics were measured for various injection pressures. Numerical simulations were attempted to investigate the internal flow structure in the circular and elliptical nozzles because the experimental study was limited in its measurements of flow velocity distributions, pressure distributions, and streamlines in the relatively small orifices. This study showed that the disintegration characteristics of the liquid jet of the elliptical nozzles were very different from those of the circular nozzle. In the case of the elliptical nozzles, the liquid jet became more unstable at the same injection pressure, unlike that of the circular nozzle. Surface breakup was observed at the jet issued from the elliptical nozzles with the increase of injection pressure. Furthermore, the numerical simulations informed that the internal flow structure of the elliptical nozzle was quite different from that of the circular nozzle. In the case of the circular nozzle, as with much of the literature on the internal flow structure of the hydraulic flip, the flow detached from the orifice wall. However, the internal flow structure of the elliptical nozzle in hydraulic flip was reattached to the orifice wall of the minor axis, unlike the flow in the circular nozzle. It has been concluded that the internal flow structure of the elliptical nozzle has influence on the disintegration characteristics of the liquid jet issued from the elliptical nozzle.