Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2017016576
pages 645-664

NUMERICAL STUDY OF ELECTRIC REYNOLDS NUMBER ON ELECTROHYDRODYNAMIC (EHD) ASSISTED ATOMIZATION

Patrick Sheehy
Department of Mechanical & Industrial Engineering, Montana State University, P.O. Box 173800, Bozeman, Montana 59717-3800, USA
Mark Owkes
Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, 59717-3800, USA

SINOPSIS

Electrohydrodynamic assisted atomization (EHD) injects electrical charges into liquid within the injector nozzle, creating an electrically charged atomizing liquid. For many relevant engineering flows, including liquid fuel injection, the charge mobility time scale (time it takes the charges to relax to the fluid-gas boundary) is similar in magnitude to the charge convection time scale (relevant flow time), which leads to a nontrivial electric charge distribution. This distribution within the liquid fuel may enhance atomization, the extent to which is dependent on the ratio of the previous time scales which are known as the electric Reynolds number (Ree). In this work, a computational approach for simulating two-phase EHD flows is used to investigate how Ree influences the resulting atomization quality. The computational approach is second order, conservative, and used to consistently transport the phase interface along with the discontinuous electric charge density and momentum. The scheme sharply handles the discontinuous electric charge density, allowing robust and accurate simulations of electric charge relaxation. Using this method, multiple three-dimensional simulations are performed with varying Ree values which highlight the effect of Ree on the atomization efficiency of a liquid jet. Comparison of these cases shows the importance of Ree on atomization and suggests that decreasing Ree (increasing charge mobility) leads to larger electric charge densities, increased Coulomb forces, and ultimately improved breakup during the atomization process.


Articles with similar content:

Bioelectrical Impedance Techniques in Medicine
Part I: Bioimpedance Measurement
Second Section: Impedance Spectrometry

Critical Reviews™ in Biomedical Engineering, Vol.24, 1996, issue 4-6
Bernard Rigaud, Jean-Pierre Morucci, Nicolas Chauveau
Effect of Combined Brinkman-Electric Boundary Layer on the Onset of Marangoni Electroconvection in a Poorly Conducting Fluid-Saturated Porous Layer Cooled from Below in the Presence of an Electric Field
Journal of Porous Media, Vol.10, 2007, issue 5
N. Rudraiah, Premini Nair, Takashi Masuoka
DIRECT NUMERICAL SIMULATION OF BINARY MIXING LAYERS
TSFP DIGITAL LIBRARY ONLINE, Vol.2, 2001, issue
Ivan Fedioun, Iskendar Gokalp, Nicolas Lardjane
EMBEDDED DNS CONCEPT FOR SIMULATING THE PRIMARY BREAKUP OF AN AIRBLAST ATOMIZER
Atomization and Sprays, Vol.26, 2016, issue 3
Johannes Janicka, Amsini Sadiki, Benjamin Sauer
INVESTIGATION IN AN UNSTEADY SPRAY IN A HIGH-TEMPERATURE HIGH-PRESSURE CHAMBER
International Heat Transfer Conference 9, Vol.4, 1990, issue
Ulrich Renz, Horst J. Richter