Suscripción a Biblioteca: Guest
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones
Atomization and Sprays
Factor de Impacto: 1.262 Factor de Impacto de 5 años: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimir: 1044-5110
ISSN En Línea: 1936-2684

Volumes:
Volumen 29, 2019 Volumen 28, 2018 Volumen 27, 2017 Volumen 26, 2016 Volumen 25, 2015 Volumen 24, 2014 Volumen 23, 2013 Volumen 22, 2012 Volumen 21, 2011 Volumen 20, 2010 Volumen 19, 2009 Volumen 18, 2008 Volumen 17, 2007 Volumen 16, 2006 Volumen 15, 2005 Volumen 14, 2004 Volumen 13, 2003 Volumen 12, 2002 Volumen 11, 2001 Volumen 10, 2000 Volumen 9, 1999 Volumen 8, 1998 Volumen 7, 1997 Volumen 6, 1996 Volumen 5, 1995 Volumen 4, 1994 Volumen 3, 1993 Volumen 2, 1992 Volumen 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v16.i7.60
pages 791-806

IMPACT WAVE-BASED MODEL OF IMPINGING JET ATOMIZATION

William E. Anderson
315 N. Grant Street, Purdue University, West Lafayette, IN 47907
Harry M. Ryan, III
NASA, Stennis Space Center, MS 39529
Robert J. Santoro
Propulsion Engineering Research Center and Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania

SINOPSIS

Previous studies of impinging jet atomizers indicated that “impact waves” may dominate the atomization of high-speed turbulent impinging jets. An experiment was conducted to characterize the formation and effects of impact waves on the atomization process. The model flow consisted of opposed turbulent water jets at atmospheric conditions. The impact waves are formed with a characteristic wavelength of about one jet diameter, and the distance between the waves was found to increase with distance from the impingement point due to wave merging, which helps explain discrepancies reported in the previous studies. A computational study of the flow structure around the stagnation point showed that the effects of impingement extend about one jet diameter upstream and that maximum gradients and incipient disruption of the surface occur at a normalized radius of 1.2, where an inflection in the jet flow from predominantly axial to predominantly radial occurs. Using these observations and measurements, and existing correlations for breakup length and drop size, a three-step phenomenological model of atomization (impact wave formation and propagation, sheet breakup into ligaments, and ligament disintegration into drops) was developed.


Articles with similar content:

MODELING OF HIGH PRESSURE SWIRL HOLLOW CONE FUEL SPRAY
ICHMT DIGITAL LIBRARY ONLINE, Vol.4, 2001, issue
Gino Bella, Rossella Rotondi, A. De Vita
MODELING THE PRIMARY BREAKUP OF HIGH-SPEED JETS
Atomization and Sprays, Vol.14, 2004, issue 1
Rolf D. Reitz
IMAGING OF IMPINGING JET BREAKUP AND ATOMIZATION PROCESSES USING COPPER-VAPOR-LASER-SHEET-ILLUMINATED PHOTOGRAPHY
International Journal of Energetic Materials and Chemical Propulsion, Vol.3, 1994, issue 1-6
R. D. Woodward, Fan Bill Cheung, M. C. Kline, R. L. Burch
OPTICAL ANALYSIS OF THE MIXING EFFECT IN FULLY DEVELOPED LIKE-DOUBLET IMPINGING JET SPRAYS
Atomization and Sprays, Vol.22, 2012, issue 5
Berlin Huang, Tony Yuan
ANALYSIS OF PRESSURE SWIRL AND PURE AIRBLAST ATOMIZATION
Atomization and Sprays, Vol.1, 1991, issue 2
A. J. Przekwas, Chien-Pei Mao, S. G. Chuech