Suscripción a Biblioteca: Guest
Atomization and Sprays

Publicado 12 números por año

ISSN Imprimir: 1044-5110

ISSN En Línea: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

LINEAR STABILITY ANALYSIS OF AN ELECTRIFIED VISCOELASTIC LIQUID SHEET IN A VISCOUS GAS MEDIUM

Volumen 24, Edición 2, 2014, pp. 155-179
DOI: 10.1615/AtomizSpr.2013008147
Get accessGet access

SINOPSIS

A linear analysis is carried out to investigate the instability behavior of a viscoelastic planar liquid sheet moving through a viscous gas in an electric field. The inner liquid is assumed to have a high electric conductivity and the outer gas is assumed to an insulating dielectric. The liquid and gas velocity profiles are taken to account. The governing equations of the sinuous and varicose disturbances for electrified viscoelastic liquid sheets have been solved using the Chebyshev spectral collocation method. The corresponding numerical results are compared with those of the electrified Newtonian liquid sheets, which reveals that the disturbance growth rate on the electrified viscoelastic liquid sheets is greater than that on electrified Newtonian ones with the identical zero shear viscosity. The maximum growth rate and dominant wave number of disturbance waves in the sinuous and varicose modes have been obtained. The influences of the electrical Euler number, liquid Reynolds number, and other rheological parameters on the instability of the electrified viscoelastic sheets have been investigated. It is concluded that the disturbance growth rate of sinuous mode is greater than that of the varicose mode. The increase of the electrical Euler number, liquid Reynolds number, and gas−liquid density ratio can accelerate the breakup of viscoelastic liquid sheets. The increase of time constant ratio and the ratio of the distance between the horizontal electrode and liquid sheet to the liquid sheet thickness would dampen the break-up process.

CITADO POR
  1. Liu Yuxin, Mo Chaojie, Liu Lujia, Fu Qingfei, Yang Lijun, Linear stability analysis of an electrified incompressible liquid sheet streaming into a compressible ambient gas, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231, 10, 2017. Crossref

  2. Zakaria Kadry, Kamel Hoda, Gamiel Yasser, Instability of a viscous liquid sheet under the influence of a tangential electric field, Alexandria Engineering Journal, 61, 7, 2022. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain